Brake 2 - MapleSim Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Brake 2

Rotational brake based on friction formula

Description

The Brake 2 component models a 1-D rotational brake with a frictional torque formula.

 Sliding Friction When in the sliding region, the frictional torque is given by $\mathrm{\tau }={f}_{N}{r}_{\mathrm{eff}}\left({\mathrm{\mu }}_{d}\left|\frac{\mathrm{\omega }}{{\mathrm{\omega }}_{1}}\right|+{\mathrm{\mu }}_{c}\left(1+\left(\mathrm{peak}-1\right)\mathrm{exp}\left(-{\left|\frac{\mathrm{\omega }}{{\mathrm{\omega }}_{s}}\right|}^{{n}_{\mathrm{decay}}}\right)\right)\right)$ where $\mathrm{\omega }$ is the angular velocity of the shaft with respect to the support ${\mathrm{\omega }}_{1}$ is the unit angular velocity ($1\frac{\mathrm{rad}}{s}$)

The $\mathrm{peak}$ parameter specifies the peak ratio of static friction to sliding friction when the viscous coefficient ${\mathrm{\mu }}_{d}$ is zero.

Connections

 Name Description Modelica ID ${\mathrm{flange}}_{a}$ Flange of left shaft flange_a ${\mathrm{flange}}_{b}$ Flange of right shaft flange_b $\mathrm{support}$ Support/housing of component support ${f}_{N}$ Normal force in newtons (brake is active if ${f}_{N}>0$) fn

Parameters

General Parameters

 Name Default Units Description Modelica ID Use support $\mathrm{false}$ True means support flange enabled, otherwise implicitly grounded useSupport ${\mathrm{\mu }}_{c}$ $0$ Coulomb coefficient of friction mu_c ${\mathrm{\mu }}_{d}$ $0$ Viscous coefficient of friction mu_d $\mathrm{peak}$ $1$ Peak of ratio $\frac{{\mathrm{\tau }}_{\mathrm{static}}}{{\mathrm{\tau }}_{\mathrm{sliding}}}$ peak ${\mathrm{\omega }}_{s}$ $0.001$ $\frac{\mathrm{rad}}{s}$ Stribeck sliding angular velocity ws ${n}_{\mathrm{decay}}$ $2$ Decay exponent nDecay ${r}_{\mathrm{eff}}$ $0.05$ $m$ Geometry constant containing friction distribution assumption r_eff

 Name Default Units Description Modelica ID ${\mathrm{\omega }}_{\mathrm{small}}$ $1·{10}^{10}$ $\frac{\mathrm{rad}}{s}$ Relative angular velocity near to zero if jumps due to a reinit(..) of the velocity can occur (set to low value only if such impulses can occur) w_small