Clutch - MapleSim Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim

Rotational Clutch

Clutch based on Coulomb friction

 Description The Rotational Clutch (or Clutch) component models a clutch controlled by an input signal. Two rotational flanges are pressed together via a normal force. Normal Force The normal force applied to the clutch surface is the product of a parameter, ${f}_{{n}_{\mathrm{max}}}$, and a normalized input signal, ${f}_{\mathrm{normalized}}$. ${f}_{n}={f}_{{n}_{\mathrm{max}}}{f}_{\mathrm{normalized}}\phantom{\rule[-0.0ex]{3.0ex}{0.0ex}}0\le {f}_{\mathrm{normalized}}\le 1$ Friction Force When the absolute angular velocity is not zero, the friction torque is a function of the velocity dependent friction coefficient $\mathrm{\mu }\left(w\right)$ , the normal force, ${f}_{n}$, and a geometric constant, ${c}_{\mathrm{geo}}$, which takes into account the geometry of the device and the assumptions on the friction distributions. $\mathrm{\tau }={c}_{\mathrm{geo}}\mathrm{\mu }\left(w\right){f}_{n}$ The geometric constant is calculated as ${c}_{\mathrm{geo}}=N\frac{{r}_{o}+{r}_{i}}{2}$ where ${r}_{i}$ is the inner radius, ${r}_{o}$ is the outer radius, and $N$ is the number of friction interfaces. Friction Table The positive part of the friction characteristic, $\mathrm{\mu }\left(w\right),w\ge 0$, is defined by the ${\mathrm{\mu }}_{\mathrm{pos}}$ parameter as a two-dimensional table (array) that specifies the sliding friction coefficients at given relative angular velocities. Each row has the form $\left[{w}_{\mathrm{rel}},\mathrm{\mu }\left({w}_{\mathrm{rel}}\right)\right]$. The first column must be ordered, $0\le {w}_{1}<{w}_{2}<\cdots <{w}_{m}$. To add rows, right-click on the value and select Edit Matrix Dimension. Only linear interpolation is supported.

Connections

 Name Description Modelica ID ${\mathrm{flange}}_{a}$ Left flange of compliant 1-dim. rotational component flange_a ${\mathrm{flange}}_{b}$ Right flange of compliant 1-dim. rotational component flange_b $\mathrm{heatPort}$ heatPort ${f}_{\mathrm{normalized}}$ Real input; normalized force f_normalized

Parameters

General Parameters

 Name Default Units Description Modelica ID ${\mathrm{\mu }}_{\mathrm{pos}}$ $\left[0.,0.5\right]$ $1$ Table of sliding friction coefficients at given relative velocities mue_pos $\mathrm{peak}$ $1$ $1$ $\mathrm{peak}{\mathrm{\mu }}_{\mathrm{pos}}\left[1,2\right]$ is the static friction coefficient peak ${c}_{\mathrm{geo}}$ $1$ $1$ Geometry constant containing friction distribution assumption cgeo ${\mathrm{fn}}_{\mathrm{max}}$ $1$ $N$ Maximum normal force fn_max Use Heat Port $\mathrm{false}$ True (checked) means the heat port is enabled useHeatPort

Advanced Parameters

 Name Default Units Description Modelica ID ${\mathrm{\phi }}_{\mathrm{nominal}}$ $1·{10}^{-4}$ $\mathrm{rad}$ Nominal value of ${\mathrm{\phi }}_{\mathrm{rel}}$ (used for scaling) phi_nominal $\mathrm{prefer}$ Prioritize ${\mathrm{\phi }}_{\mathrm{rel}}$ and ${w}_{\mathrm{rel}}$ as states stateSelect ${\mathrm{\omega }}_{\mathrm{small}}$ $1·{10}^{10}$ $\frac{\mathrm{rad}}{s}$ The velocity reinitializes when $\left|\mathrm{\omega }\right|\le {\mathrm{\omega }}_{\mathrm{small}}$ w_small ${K}_{\mathrm{locked}}$ $0$ Gain driving the relative motion between the friction elements to 0 when locked. This parameter should only be non-zero when using the model with fixed-step integration. K_locked

 Modelica Standard Library The component described in this topic is from the Modelica Standard Library. To view the original documentation, which includes author and copyright information, click here.

 See Also