QuasiRegularPolyhedron - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


geom3d

  

QuasiRegularPolyhedron

  

define a quasi-regular polyhedron

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

QuasiRegularPolyhedron(gon, sch, o, r)

cuboctahedron(gon, o, r)

icosidodecahedron(gon, o, r)

Parameters

gon

-

the name of the polyhedron to be created

sch

-

Schlafli symbol

o

-

point

r

-

positive number, an equation

Description

• 

A quasi-regular polyhedron is defined as having regular faces, while its vertex figures, though not regular, are cyclic and equiangular (that is, has alternate sides and can be inscribed in circles).

• 

There are two quasi-regular polyhedra: cuboctahedron and icosidodecahedron.

• 

In Maple, one can define a quasi-regular polyhedron by using the command QuasiRegularPolyhedron(gon, sch, o, r) where gon is the name of the polyhedron to be defined, sch the Schlafli symbol, o the center of the polyhedron.

• 

When r is a positive number, it specifies the radius of the circum-sphere. When r is an equation, the left-hand side is one of radius, side, or mid_radius, and the right-hand side specifies the radius of the circum-sphere, the side, or the mid-radius (respectively) of the quasi-regular polyhedron to be constructed.

• 

The Schlafli symbol can be one of the following:

Maple's Schlafli

Polyhedron type

[[3],[4]]

cuboctahedron

[[3],[5]]

icosidodecahedron

• 

Another way to define a quasi-regular polyhedron is to use the command PolyhedronName(gon, o, r) where PolyhedronName is either cuboctahedron or icosidodecahedron.

• 

To access the information relating to a quasi-regular polyhedron gon, use the following function calls:

center(gon)

returns the center of the circum-sphere of gon.

faces(gon)

returns the faces of gon, each face is represented

 

as a list of coordinates of its vertices.

form(gon)

returns the form of gon.

radius(gon)

returns the radius of the circum-sphere of gon.

schlafli(gon)

returns the Schlafli symbol of gon.

sides(gon)

returns the length of the edges of gon.

vertices(gon)

returns the coordinates of vertices of gon.

Examples

withgeom3d:

Define an icosidodecahedron with center (0,0,0), radius of the circum-sphere 1

icosidodecahedront,pointo,0,0,0,1

t

(1)

Access information relating to the icosidodecahedron t:

centert

o

(2)

formt

icosidodecahedron3d

(3)

radiust

1

(4)

schlaflit

3,5

(5)

sidest

255+5

(6)

Define a cuboctahedron with center (1,1,1), radius 2

QuasiRegularPolyhedroni,3,4,pointo,1,1,1,1

i

(7)

formi

cuboctahedron3d

(8)

See Also

geom3d[Archimedean]

geom3d[polyhedra]

geom3d[RegularPolyhedron]

geom3d[stellate]