 networks(deprecated)/show - Maple Help

networks

 show
 shows a table of known information about a network Calling Sequence show(G) Parameters

 G - graph or network Description

 • Important: The networks package has been deprecated.Use the superseding package GraphTheory instead.
 • Returns a detailed description of the graph G. It is used primarily to view the internal structure of the graph.
 • It is normally loaded via the command with(networks) but may also be referenced using the full name networks[show](...). Examples

Important: The networks package has been deprecated.Use the superseding package GraphTheory instead.

 > $\mathrm{with}\left(\mathrm{networks}\right):$
 > $G≔\mathrm{complete}\left(3\right):$
 > $T≔\mathrm{show}\left(G\right)$
 ${T}{≔}{table}{}\left(\left[{\mathrm{_Countcuts}}{=}{\mathrm{_Countcuts}}{,}{\mathrm{_Counttrees}}{=}{\mathrm{_Counttrees}}{,}{\mathrm{_Eweight}}{=}{table}{}\left(\left[{\mathrm{e1}}{=}{1}{,}{\mathrm{e2}}{=}{1}{,}{\mathrm{e3}}{=}{1}\right]\right){,}{\mathrm{_Tail}}{=}{table}{}\left(\left[\right]\right){,}{\mathrm{_Ends}}{=}{table}{}\left(\left[{\mathrm{e1}}{=}\left\{{1}{,}{2}\right\}{,}{\mathrm{e2}}{=}\left\{{1}{,}{3}\right\}{,}{\mathrm{e3}}{=}\left\{{2}{,}{3}\right\}\right]\right){,}{\mathrm{_Emaxname}}{=}{3}{,}{\mathrm{_EdgeIndex}}{=}{table}{}\left({\mathrm{symmetric}}{,}\left[\left({1}{,}{3}\right){=}\left\{{\mathrm{e2}}\right\}{,}\left({1}{,}{2}\right){=}\left\{{\mathrm{e1}}\right\}{,}\left({2}{,}{3}\right){=}\left\{{\mathrm{e3}}\right\}\right]\right){,}{\mathrm{_Head}}{=}{table}{}\left(\left[\right]\right){,}{\mathrm{_Vweight}}{=}{table}{}\left({\mathrm{sparse}}{,}\left[\right]\right){,}{\mathrm{_Neighbors}}{=}{table}{}\left(\left[{1}{=}\left\{{2}{,}{3}\right\}{,}{2}{=}\left\{{1}{,}{3}\right\}{,}{3}{=}\left\{{1}{,}{2}\right\}\right]\right){,}{\mathrm{_Bicomponents}}{=}{\mathrm{_Bicomponents}}{,}{\mathrm{_Edges}}{=}\left\{{\mathrm{e1}}{,}{\mathrm{e2}}{,}{\mathrm{e3}}\right\}{,}{\mathrm{_Status}}{=}\left\{{\mathrm{SIMPLE}}{,}{\mathrm{COMPLETE}}\right\}{,}{\mathrm{_Vertices}}{=}\left\{{1}{,}{2}{,}{3}\right\}{,}{\mathrm{_Econnectivity}}{=}{\mathrm{_Econnectivity}}\right]\right)$ (1)
 > $\mathrm{eval}\left(T\left[\mathrm{_Ends}\right]\right)$
 ${table}{}\left(\left[{\mathrm{e1}}{=}\left\{{1}{,}{2}\right\}{,}{\mathrm{e2}}{=}\left\{{1}{,}{3}\right\}{,}{\mathrm{e3}}{=}\left\{{2}{,}{3}\right\}\right]\right)$ (2)
 > $G\left(\mathrm{_Ends}\right)$
 ${table}{}\left(\left[{\mathrm{e1}}{=}\left\{{1}{,}{2}\right\}{,}{\mathrm{e2}}{=}\left\{{1}{,}{3}\right\}{,}{\mathrm{e3}}{=}\left\{{2}{,}{3}\right\}\right]\right)$ (3)