Finite Excluded and Included Point Topologies
Taha Guma el turki
Department of Mathematics, Faculty of Science, University of Benghazi, Libya
E-mail: Taha1978_2002@yahoo.com
In this application we will compute new issues related to Finite Topological Spaces. The new procedures are : (1) A procedure to generate Excluded point topology. "GeneratExcT(n,m)". (2) A procedure to Check if a given topology is Excluded point topology or not "CheckExcluded(X,T)". (3) A procedure to find the number of proper open sets in a given excluded point topology. "NumberofPOinExcluded(X,T)". (4) A procedure to find all excluded point topologies over a given set. "AllExcludedPointTopologies(X)". (5) A procedure to generate included point topology. "GeneratIncT(n,m)". (6) A procedure to check if a given topology is included point topology or not. "CheckIncluded(X,T)". (7) A procedure to find the number of proper open sets in a given included point topology. "NumberofPOinIncluded(X,T)". (8) A procedure to find all included point topologies over a given set. "AllincludedPointTopologies(X,T)". Notes: In procedures (1) and (5) the arguments n and m refer to the number of the set elements and "the order of the point which we want to exclude or include" respectively and these two numbers must satisfy that m<=n .
KeyWords: Excluded point topology, Included point topology
restart; with(combinat):
#(1) A procedure to generate Excluded point topology. GeneratExcT:=proc(n,m) local i,x,X,EXT,EXP; if m<=n then X:={seq(x[i],i=1..n)}; EXP:=x[m]; print(`The excluded point is`,x[m],`.And the excluded point topology is:`); EXT:=powerset(X minus {EXP}) union {X}; else print(`false entries`); fi; end:
#########################~~~~~~##################################################################################; #(2) A procedure to Check if a given topology is Excluded point topology or not . CheckExcluded:=proc(X,T) local x,C; C:={}; for x in X do if T=combinat:-powerset(X minus {x}) union {X} then C:=C union {x};else C:=C; end if; od; if nops(C)=1 then print(`True The given topology is excluded point topology and the excluded point is `,op(C)); else false; end if; end:
########################~~~~~~~~~##########################~~~~~~~~~~############################################; #(3) A procedure to find the number of proper open sets in a given excluded point topology. NumberofPOinExcluded:=proc(X,EXT) print(`The number of proper open sets in the given excluded point topology is`,nops(EXT)- 2,`over a set with`,nops(X),`points`); end:
########################~~~~~~~~~##########################~~~~~~~~~~############################################;
#(4) A procedure to find all excluded point topologies over a given set. AllExcludedPointTopologies:=proc(X)
local x,CountEx; CountEx:={}; for x in X do CountEx:={powerset(X minus {x}) union {X} } union CountEx; od; CountEx; end:
##########~~~~~~~#############################~~~~~~~##################################~~~~~~#########;
#(5) A procedure to generate included point topology. GeneratIncT:=proc(n,m) local cc,i,T1,XX; if m<=n then XX:={seq(x[i],i=1..n)}; cc:={x[m]}; print(`The included point is`,x[m],`.And the included point topology is:`); T1:=map(`union`,powerset(XX),cc) union {{}}; else print(`false entries`); T1;XX; fi; end: ########################~~~~~~~~~##########################~~~~~~~~~~############################################;
#(6) A procedure to check if a given topology is included point topology or not. CheckIncluded:=proc(X,T) local x,C;C:={}; for x in X do if T=map(`union`,combinat:-powerset(X),{x}) union {{}} then C:=C union {x} ;else C:=C; end if; od; C; if nops(C)=1 then print(`True The given topology is included point topology and the included point is`,op(C));else false; end if; end:
#(7) A procedure to find the number of proper open sets in a given included point topology. NumberofPOinIncluded:=proc(X,T) print(`The number of proper open sets in the given included point topology is`,nops(T)- 2,`over a set with`,nops(X),`points`); end:
#(8) A procedure to find all included point topologies over a given set. AllincludedPointTopologies:=proc(X)
local x,Countinc; Countinc:={}; for x in X do Countinc:={map(`union`,powerset(X),{x}) union {{}}} union Countinc; od; Countinc; end:
GeneratExcT(7,2);
X:={a,b,c,d};
T:={{},{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c},X};
CheckExcluded(X,T);
NumberofPOinExcluded(X,T);
AllExcludedPointTopologies(X);
###############################################################################################################. GeneratIncT(5,3);
X:={a,b,c,d,e};
T:={{},{a},{a,b},{a,c},{a,d},{a,e},{a,b,c},{a,b,d},{a,b,e},{a,d,e},{a,c,e},{a,c,d},{a,b,c,d},{a,b,c,e},{a,c,d,e},{a,b,d,e},X};
CheckIncluded(X,T);
NumberofPOinIncluded(X,T); AllincludedPointTopologies(X);
# Y:={1,2,3}; TY:=powerset(Y);
CheckExcluded(Y,TY);
CheckIncluded(Y,TY);
GeneratIncT(6,6);
GeneratIncT(1,1);
GeneratIncT(5,5);
GeneratExcT(1,1);
GeneratExcT(3,6);