DFT (density functional theory) program for atoms utilizing
basis-sets consisting of s-functions (spherical Gaussians) only
copyright: P. Vogt, H. Huber, Jan. 2000
All properties in atomic units!
In this program we kept the names and structure as close as possible to the corresponding MAPLE-sheet for SCF-calculations, to show the analogies and differences
Input (nuclear data, basis-set data, occupation matrix)
> restart:
> with(linalg):
Warning, the protected names norm and trace have been redefined and unprotected
> Digits:=10:
> NumberofNuclei := 1: Example: helium atom i.e. 1 nucleus in the origin
> Dim := 3: 3 basis functions on the nucleus
define nuclear data:
atomic number
X Y Z
> AtomicNumber := array([2]);
> NuclearCoordinate := array([[0,0,0]]);
define basis-set data:
Exponent
> Exponent := array([3.6,1.2,0.4]);
> BasisCoordinate := array([[0,0,0], [0,0,0], [0,0,0]]);
Occupation-Matrix in the molecular orbital representation (MO-basis)
> Occupation := array([[2,0,0], [0,0,0], [0,0,0]]); lowest MO occupied with 2 electrons
Parameters and auxiliary functions
> X:=1:Y:=2:Z:=3: makes the program more readable, as x, y ans z-ccordinates are stored in arrays
sqrDistance - Function to calculate the square of the distance between two basis functions
> sqrDistance := proc (func1, func2)
> (BasisCoordinate[func1,X]-BasisCoordinate[func2,X])^2 + (BasisCoordinate[func1,Y]-BasisCoordinate[func2,Y])^2 + (BasisCoordinate[func1,Z]-BasisCoordinate[func2,Z])^2;
> end:
ProductGaussian - Calculates the product of two Gaussian functions
The product of two Gaussian fucntions is again a Gaussian with a new exponent cnew,
which is the sum of the original exponents, and new coordinates Rxnew, Rynew, Rznew,
which are found from the old ones by weighting with the exponents;
> ProductGaussian := proc(func1,func2,cnew::evaln,Rxnew::evaln,Rynew::evaln,Rznew::evaln)
> local a,b;
> cnew := Exponent[func1] + Exponent[func2];
> a := Exponent[func1] / eval(cnew);
> b := Exponent[func2] / eval(cnew);
> Rxnew := a * BasisCoordinate[func1,X] + b * BasisCoordinate[func2,X];
> Rynew := a * BasisCoordinate[func1,Y] + b * BasisCoordinate[func2,Y];
> Rznew := a * BasisCoordinate[func1,Z] + b * BasisCoordinate[func2,Z];
AuxInt - Auxiliary function for the calculation of the potential and the two-electron-integrals
> AuxInt := proc(X)
> if X=0 then 1 else evalf(1/2*sqrt(Pi/X)*erf(sqrt(X))) fi;
Diagonalisation of a matrix by the Jacobi method
a: Matrix to be diagonalised
d: Eigenvalues
v: Eigenvectors
includes symmetrisation of the matrix at the beginning and
sorting of the eigenvalues and -vectors at the end
> Diagonalisation := proc(a,d,v) local i,ip,iq,j,c,g,h,s,sm,t,tau,theta,tresh,b,z,Maxiter; Symmetrisation(a); Maxiter:=10**Digits; d:=array(1..Dim); v:=array(1..Dim,1..Dim); b:=array(1..Dim); z:=array(1..Dim); for ip from 1 to Dim do for iq from 1 to Dim do v[ip,iq]:=0; od: v[ip,ip]:=1; od: for ip from 1 to Dim do b[ip]:=a[ip,ip]; d[ip]:=b[ip]; z[ip]:=0; od: for i from 1 to Maxiter do sm:=0; for ip from 1 to Dim-1 do for iq from ip+1 to Dim do sm:=sm+abs(a[ip,iq]); od: od: if(sm<10**(-Digits-2)) then break fi; if(i<4)then tresh:=0.2*sm/Dim**2; else tresh:=0; fi; for ip from 1 to Dim-1 do for iq from ip+1 to Dim do g:=100*abs(a[ip,iq]); if ((i>4) and (abs(d[ip])+g=abs(d[ip]))and(abs(d[iq])+g=abs(d[iq]))) then a[ip,iq]:=0; elif(abs(a[ip,iq])>tresh) then h:=evalm(d[iq]-d[ip]); if(abs(h)+g = abs(h))then t:=a[ip,iq]/h; else theta:=0.5*h/a[ip,iq]; t:=1/(abs(theta)+sqrt(1.+theta**2)); if(theta<0) then t:=-t; fi; fi; c:=1/sqrt(1+t**2); s:=t*c; tau:=s/(1+c); h:=t*a[ip,iq]; z[ip]:=z[ip]-h; z[iq]:=z[iq]+h; d[ip]:=d[ip]-h; d[iq]:=d[iq]+h; a[ip,iq]:=0; for j from 1 to ip-1 do g:=a[j,ip]; h:=a[j,iq]; a[j,ip]:=g-s*(h+g*tau); a[j,iq]:=h+s*(g-h*tau); od; for j from ip+1 to iq-1 do g:=a[ip,j]; h:=a[j,iq]; a[ip,j]:=g-s*(h+g*tau); a[j,iq]:=h+s*(g-h*tau); od: for j from iq+1 to Dim do g:=a[ip,j]: h:=a[iq,j]: a[ip,j]:=g-s*(h+g*tau): a[iq,j]:=h+s*(g-h*tau): od: for j from 1 to Dim do g:=v[j,ip]: h:=v[j,iq]: v[j,ip]:=g-s*(h+g*tau): v[j,iq]:=h+s*(g-h*tau): od: fi: od: od: for ip from 1 to Dim do b[ip]:=b[ip]+z[ip]: d[ip]:=b[ip]: z[ip]:=0: od:od: Sort(d,v);
> print(d);
Sort - Sort the eigenvalues und eigenvectors
To sort the eigenvalues and corresponding eigenvectors after a diagonalisation according to the
size of the eigenvalues.
> Sort:=proc(Eigenvalues,Eigenvect)
> local MaxValue,MaxIndex,column1,column2, buffer;
> for column1 to Dim-1 do column1;
> MaxValue:=Eigenvalues[column1];
> MaxIndex:=Dim+1;
> for column2 from column1+1 to Dim do
> if MaxValue > Eigenvalues[column2] then
> MaxIndex:=column2;
> MaxValue:=Eigenvalues[MaxIndex];
> fi;
> od;
> if MaxIndex < Dim+1 then
> Eigenvect:=swapcol(Eigenvect,column1,MaxIndex);
> Eigenvalues[MaxIndex]:=Eigenvalues[column1];
> Eigenvalues[column1]:=MaxValue;
> evalm(Eigenvalues);
Symmetrisation - Symmetrizes a matrix A
> Symmetrisation:=proc(A)
> A:=scalarmul(matadd(A,transpose(A)),0.5);
Integral functions (S, T, V, 2e-integral, M- and Vx-Operator)
SCF like functions
Overlapintegral - Function to calculate the overlapinteg rals <j|j>
> Overlapintegral := proc (func1, func2)
> local alpha, beta, cinv,Q ,aux;
> alpha := Exponent[func1];
> beta := Exponent[func2];
> cinv := 1/(alpha+beta);
> Q := exp(-alpha * beta * cinv * sqrDistance(func1,func2));
> aux := (4*alpha*beta*cinv^2);
> Q*sqrt(sqrt(aux^3));
KineticIntegral - Function to calculate the kinetic integral <j| T |j>
> KineticIntegral := proc (func1, func2)
> local alpha, beta, E;
> E := alpha * beta /(alpha+beta);
> Overlapintegral(func1,func2) * E *(3 - 2*E * sqrDistance(func1,func2));
PotentialIntegral - Function to calculate the potential integral <j| V |j>
> PotentialIntegral := proc(func1, func2)
> local c,Rx,Ry,Rz,V,argument, nuc;
> ProductGaussian(func1, func2,c,Rx,Ry,Rz);
> V := 0;
> for nuc to NumberofNuclei do
> argument := c*((Rx-NuclearCoordinate[nuc,X])^2 + (Ry-NuclearCoordinate[nuc,Y])^2 + (Rz-NuclearCoordinate[nuc,Z])^2);
> V := V + AtomicNumber[nuc] * AuxInt(argument);
> evalf(-Overlapintegral(func1,func2) * 2/sqrt(Pi) * sqrt(c) * V);
TwoElectronIntegral - Function to calculate the 2-e-integral <jj|1/ r |jj>
> TwoElectronIntegral := proc(i,j,k,l)
> local Argument, cnew, c1, c2, Rx1, Rx2, Ry1, Ry2, Rz1, Rz2;
> ProductGaussian(i,j,c1,Rx1,Ry1,Rz1);
> ProductGaussian(k,l,c2,Rx2,Ry2,Rz2);
> cnew := c1 * c2 / (c1 + c2);
> Argument := cnew * ((Rx1 - Rx2)^2 + (Ry1 - Ry2)^2 + (Rz1 - Rz2)^2);
> evalf(2/sqrt(Pi)) * Overlapintegral(i, j) * Overlapintegral(k, l) * sqrt(cnew) * AuxInt(Argument);
MOperator - 2-e-Operator for closed shells
as in SCF, but without exchange integral!
> MOperator := proc(i,j)
> local Sum, k, l;
> Sum := 0;
> for k to Dim do
> for l to Dim do
> Sum := Sum + DensityMatrix[k, l] * TwoElectronIntegral(i, j, k, l);
> Sum;
Exchange functional
rho - calculates the density (called by ValueOfVx)
> rho := proc(r)
> local row, column, sum, mu, nu, factor, prefactor;
prefactor = (2/Pi)**(3/2)
> prefactor := .50794908747392775826;
> sum := 0;
> for row from 1 to Dim do
> for column from 1 to row do
> mu := Exponent[row];
> nu := Exponent[column];
> factor := 2*(mu * nu)**0.75;
> if row=column then
> factor:=0.5*factor;
> sum := sum + factor * DensityMatrix[row,column] * exp(-(mu + nu) * r**2);
> od:od:
> prefactor*sum:
ValueOfVx - calculates the value of the exchange functional
(uses rho and is called by the numerical integration trapzd, which in turn is called by DensityIntegral)
> ValueOfVx := proc(i,j,x)
> local rhotmp,result;
> rhotmp := rho(x);
> if rhotmp = 0 then
> result := 0;
> else
> result := x**2 * exp(-(Exponent[i]+Exponent[j]) * x**2+ln(rhotmp) / 3);
> result;
DensityIntegral - numerical integration over exchange density (for a spherical density only!)
This is the trapezoidal integration routine used in DensityIntegral
(this routine from Numerical Recipe uses ValueofX (see above))
> trapzd := proc(i,j,A,B,st::evaln,K,it::evaln)
> local result, tnm, loop, del, x, sum;
> if eval(K) = 1 then
> result := 0.5 * (B-A) * (ValueOfVx(i,j,A) + ValueOfVx(i,j,B));
> it := 1;
> tnm := eval(it);
> del := (B-A) / tnm;
> x := A + 0.5 * del;
> for loop from 1 to eval(it) do
> sum := sum + ValueOfVx(i,j,x);
> x := x + del;
> result := 0.5 * (eval(st) + (B-A) * sum / tnm);
> it := eval(it) * 2;
DensityIntegral - calculates the integral used in VxOperator
(this is procedure QSIMP from Numerical Recipes; it calles trapzd)
> DensityIntegral := proc(i,j)
> local A,B,EPS, s, st, ost, os, K, it, loop;
> A:=0;B:=10;
> EPS:=1e-6;
> K:=1;it := 0;loop:=true;
> st:=-1e30;s:=-1e30;
> os:=s;ost:=st;
> while (loop) do
> os := s;
> ost := st;
> st := evalf(trapzd(i,j,A,B,ost,K,it));
> K := K + 1;
> s := (4 * st - ost) / 3;
> loop := evalb(abs(s-os) > EPS * abs(os));
> s;
VxOperator - Exchange Operator
> VxOperator := proc(row,column)
> local prefactor;
prefactor = -(2/Pi)**(3/2) * 4*Pi * (3/Pi)**(1/3)
> prefactor := -6.2857027940461438505;
> evalf(prefactor * sqrt(sqrt((Exponent[row] * Exponent[column])**3))*DensityIntegral(row,column));
Construction of integral matrices
The same as in the SCF program
Overlap Matrix S
> SMatrix := array(1..Dim,1..Dim):
> for row to Dim do
> for column to row do
> SMatrix[row,column] := Overlapintegral(row,column);
> SMatrix[column,row] := SMatrix[row,column];
> od:
> print (SMatrix):
Kinetic Energy Matrix T
> TMatrix := array(1..Dim,1..Dim):
> TMatrix[row,column] := KineticIntegral(row,column);
> TMatrix[column,row] := TMatrix[row,column];
> print(TMatrix);
Potential Energy Matrix V
> VMatrix := array(1..Dim,1..Dim):
> for column to Dim do
> VMatrix[row,column] := PotentialIntegral(row,column);
> VMatrix[column,row] := VMatrix[row,column];
> print(VMatrix);
1. DFT-Step (Solution of the general eigenvalue problem)
Orthogonalisation of the basis-set
The general eigenvalue problem can be simplified to the special eigenvalue problem by a transformation
to an orthonormal basis set, This is solved by diagonalisation. Othonormalisation means that the
overlap-matrix has to be transformed to the unity-matrix, i.e. a transformation matrix A has to
be found such that A T SA = I. To this purpose we first diagonalise : B T SB = D, where
B = "EigenVectors" is the transformation matrix, and D = "SSpur" is diagonal.
> SSpur := diag(eigenvals(SMatrix)):
> evalf(Diagonalisation(SMatrix,EigenValues,EigenVectors));
> print(EigenVectors);
Then we form the square-root of the diagonal matrix = "RootSMatrix"
> RootSMatrix := SSpur:
> for i to Dim do
> RootSMatrix[i,i] := sqrt(EigenValues[i]);
> print(RootSMatrix);
Multiplying the "inverse RootSMatrix" W with the EigenVectors B from the left yields the
desired transformation matrix: A = BW, as (BW) T SBW = W(B T SB)W =
WDW = I
> TransMatrix := evalm(EigenVectors &* inverse(RootSMatrix));
Fock Operator, transformation to the orthogonal basis-set and diagonalisation
In the first SCF-step, the density matrix is put to zero, i.e. the problem is treated as one-electron problem. The Fock operator in a one electron problem is F = Hcore = T + V = TVMatrix.
Transformation to the orthonormal basis-set yields F' = A T FA = A T TVMatrix A
> TVMatrix := evalm( TMatrix &+ VMatrix); Hcore = T + V
> FockOp := evalm(transpose(TransMatrix) &* TVMatrix &* TransMatrix);
The Fock operator F' is diagonalised and yields as eigenvalues the orbital energies and as
eigenvectors the coefficients c' representing the molecular orbitals in the orthonormal basis-set
> evalf(Diagonalisation(FockOp,EigenValues,OBEigenVec));
> print(OBEigenVec);
Backtransformation of the coefficients and formation of the density matrix
Backtransformation of the coefficients to the original AO-Basis: c = Ac'
> MOEigenVectors := evalm(TransMatrix &* OBEigenVec);
Transformation der Besetzungs-Matrix in der MO-Basis (s. Eingabe) in die ursprngliche
AO-Basis -> Dichtematrix P
> DensityMatrix := evalm(MOEigenVectors &* Occupation &* transpose(MOEigenVectors));
Further DFT-Steps
Two-Electron-Coulomb-Operator Matrix
M mn = Element mn of the M-Matrix = Element mn of the 2J-Matrix
= S l S r P lr ( mn / lr )
> MMatrix := array(1..Dim,1..Dim):
> MMatrix[row,column] := MOperator(row,column);
> MMatrix[column,row] := MMatrix[row,column];
> print(MMatrix);
Two-Electron-Exchange-Operator Matrix
> VxMatrix := array(1..Dim,1..Dim):
> VxMatrix[row,column] := VxOperator(row,column);
> VxMatrix[column,row] := VxMatrix[row,column];
> print(VxMatrix);
Fock Operator:
F = Hcore + M + Vx
> FMatrix := evalm(TVMatrix &+ MMatrix &+ VxMatrix);
F' = A T FA, Transformation of the Fock Operator to the orthonormal basis-set
> FockOp := evalm(transpose(TransMatrix) &* FMatrix &* TransMatrix);
Calculate density matrix
Transformation of the Occupation-Matrix from the MO-Basis (see input) to the original
AO-Basis -> Densitymatrix P
Convergence
Energy = trace of "EMatrix" = trace [P ( H + 1/2 M)]
> EMatrix := evalm(.5 * DensityMatrix &* (TVMatrix &+ VxMatrix &+ FMatrix &+ (-.5 * VxMatrix) ));
> Etot_old := Etot; The energy is saved in Etot_old , for a comparison in the next step
> Etot := trace(EMatrix); form trace
> Dif := Etot - Etot_old; Energy lowering in the last SCF-Step -> Convergence ?
>
Next DFT-Step