 
													Maple
シンプルな操作性の高度数学ソフトウェア
• 教育機関向け Maple • 学生向け Maple • Maple Learn • Maple Calculator App • 企業及び官公庁向け Maple • 個人利用向け Maple 
													Maple Add-Ons
• 学生向けEブック & 学習ガイド • Maple ツールボックス • MapleNet • 無償版 Maple Player 
                                                    Student Success Platform
定着率の向上
Maple Flow
Engineering calculations & documentation
• Maple Flow • Maple Flow Migration Assistant 
                                                    
 
                             
													  
													  
                                                     
                                                     
													 
                            
![[x = -1.430647445, x = 3.652088914]](RootFindings/RootFinding_1.gif)
 :
:
 and
 and  with respect to
 with respect to  :
:![[-4.795738156, -3.854101966, -1.739664347, 1.250000000, 2.854101966, 3.227646598, 4.307755905, 7.500000000]](RootFindings/RootFinding_7.gif)
![[-4.795738156, -3.854101966, -1.739664347, 1.250000000, 2.854101966, 3.227646598, 4.307755905, 7.500000000]](RootFindings/RootFinding_8.gif)
 and
 and  when we substitute the candidates:
 when we substitute the candidates:
![[y = -0.2992556510e-1]](RootFindings/RootFinding_12.gif)
![[y = -0.2992556510e-1, y = 0.2992556510e-1]](RootFindings/RootFinding_13.gif)
](RootFindings/RootFinding_14.gif) ,
,  :
:
 :
:
![[y = -5.845766191, y = .8624794396, y = 4.983286752]](RootFindings/RootFinding_19.gif)
![[y = -4.630064794, y = 4.630064794]](RootFindings/RootFinding_20.gif)
 and
 and  are distinct.
 are distinct.![[[x = 3.227646598, y = -3.547153427], [x = -3.854101966, y = -2.854101966], [x = -4.795738156, y = -0.2992556510e-1], [x = 4.307755905, y = 2.107899206], [x = 2.854101966, y = 3.854101966], [x = -1.73...](RootFindings/RootFinding_23.gif)
![[[x = 3.227646598, y = -3.547153427], [x = -3.854101966, y = -2.854101966], [x = -4.795738156, y = -0.2992556510e-1], [x = 4.307755905, y = 2.107899206], [x = 2.854101966, y = 3.854101966], [x = -1.73...](RootFindings/RootFinding_24.gif)
![[[x = 3.227646598, y = -3.547153427], [x = -3.854101966, y = -2.854101966], [x = -4.795738156, y = -0.2992556510e-1], [x = 4.307755905, y = 2.107899206], [x = 2.854101966, y = 3.854101966], [x = -1.73...](RootFindings/RootFinding_25.gif)
 by replacing
 by replacing  with
 with  in the last term:
 in the last term:![[-4.795738156, -3.854101966, -1.739664347, 1.285398164, 2.854101966, 3.227646598, 4.307755905, 7.535398164]](RootFindings/RootFinding_29.gif)
![[-4.795738156, -3.854101966, -1.739664347, 1.285398164, 2.854101966, 3.227646598, 4.307755905, 7.535398164]](RootFindings/RootFinding_30.gif)

![[y = -0.2992556510e-1]](RootFindings/RootFinding_32.gif)
![[y = -0.2992556510e-1, y = 0.2992556510e-1]](RootFindings/RootFinding_33.gif)

![[y = -5.827352781, y = .8577160795, y = 4.969636701]](RootFindings/RootFinding_35.gif)
![[y = -4.620362709, y = 4.620362709]](RootFindings/RootFinding_36.gif)

 evaluated over all isolating intervals for
 evaluated over all isolating intervals for  does not contain zero, which confirms that
 does not contain zero, which confirms that  and
 and  have no common zero at
 have no common zero at  . In contrast,
. In contrast,
 , evaluated at the isolating intervals for the root of
, evaluated at the isolating intervals for the root of  , contains zero. This still does not validate the simultaneous zero of both systems, but is a strong hint. Techniques along these lines can serve to filter candidates numerically before trying time-consuming symbolic simplification and zero-testing, and can be used as cornerstones for complete solvers.
, contains zero. This still does not validate the simultaneous zero of both systems, but is a strong hint. Techniques along these lines can serve to filter candidates numerically before trying time-consuming symbolic simplification and zero-testing, and can be used as cornerstones for complete solvers.

 will produce distinct roots of
 will produce distinct roots of  and
 and  in
 in  . Thus, the direct handling of arbitrary real coefficients is not only convenient, but required for correctness.
. Thus, the direct handling of arbitrary real coefficients is not only convenient, but required for correctness. :
:












