Ratrecon
inert rational function reconstruction
Calling Sequence
Parameters
Description
Examples
Ratrecon(u, m, x, N, D) mod p
Ratrecon(u, m, x, N, D, 'n', 'd') mod p
u, m
-
polynomials in x
x
name
N, D
(optional) non-negative integers
n, d
(optional) variables
p
integer > 1
This routine reconstructs a rational function nd from its image umodm where u and m are polynomials in Fx, and F is a field of characteristic p.
Given umodm and non-negative integers N and D, if the call Ratrecon(u,m,x,N,D) mod p succeeds then the output is a rational function n/d in x such that
nd==umodm,gcdn,d=1,degreen,x≤Nand degreed,x≤D.
Otherwise Ratrecon returns FAIL indicating that no such polynomials n and d exist. The reconstruction is unique up to multiplication by a constant in F if the following condition holds.
N + D < degree(m,x)
If the optional parameters N and D are not specified then they are determined by the degree of m. They are assigned the largest possible values satisfying the above constraint such that N=D or N-D=1.
If the optional parameters n and d are specified then Ratrecon returns either true or false. If rational reconstruction succeeds then true is returned and these parameters are assigned the numerator and denominator separately, otherwise false is returned and these parameters are not changed.
The special case of m=xk corresponds to computing the (N, D) Pade approximate to the series u of order Oxk .
If the first input u is a polynomial in variables other than x then Ratrecon is applied to the coefficients of the polynomial in those variables. See the last example in the Examples section.
For the special case of N=0, the polynomial dn is the inverse of u in Fxm provided u and m are relatively prime.
u≔3+5x+7x2+11x3+13x4
u≔13x4+11x3+7x2+5x+3
m≔x5
p≔97
r≔Ratreconu,m,xmodp
r≔19x2+56x+77x2+19x+58
Ratreconu,m,x,2,2modp
19x2+56x+77x2+19x+58
Ratreconu,m,x,1,3modp
27x+52x3+43x2+34x+82
Ratreconu,m,x,1,1modp
FAIL
Ratreconu,m,x,2,2,n,dmodp
true
n,d
19x2+56x+77,x2+19x+58
aliasα=RootOfx2+5
α
u≔5+7α+11+13αx+17+19αx2
r≔Ratreconu,x3,xmod97
r≔2xα+3α+71x+46x+10α+21
evalaseriesr,x,3mod97
5+7α+11+13αx+17+19αx2+Ox3
`mod`≔mods:
u≔x3+6t3−3t−5x2+4t3+6t2+5t−4x+t−1
m≔t−2t−3t−4t−5
p≔13
Ratreconu,m,t,1,2modp
t−1−tx2t−1+x3+2txt2−1
See Also
convert[ratpoly]
iratrecon
mod
ratrecon
Download Help Document