GroupTheory
HamiltonianGroup
construct a finite Hamiltonian group
NumHamiltonianGroups
find the number of Hamiltonian groups of a given order
AllHamiltonianGroups
find all Hamiltonian groups of a given order
Calling Sequence
Parameters
Options
Description
Examples
Compatibility
HamiltonianGroup( n, k )
NumHamiltonianGroups( n )
AllHamiltonianGroups( n )
n
-
a positive integer
k
formopt : option of the form form = "permgroup" or form = "fpgroup"
A group is Hamiltonian if it is non-Abelian, and if every subgroup is normal. Every Hamiltonian group has the quaternion group as a direct factor, so the order of every finite Hamiltonian group is a multiple of 8.
For a positive integer n, the NumHamiltonianGroups( n ) command returns the number of Hamiltonian groups of order n. (This is 0 if n is not a multiple of 8.)
The HamiltonianGroup( n, k ) command returns the k-th Hamiltonian group of order n. An exception is raised if n is not a multiple of 8.
The AllHamiltonianGroups( n ) command returns an expression sequence of all the Hamiltonian groups of order n, where n is a positive integer. Note that NULL is returned if n is not a multiple of 8.
The HamiltonianGroup and AllHamiltonianGroups commands accept an option of the form form = F, where F may be either of the strings "permgroup" (the default), or "fpgroup".
with⁡GroupTheory:
There is an unique Hamiltonian group of each 2-power greater than or equal to 8.
seq⁡NumHamiltonianGroups⁡2i,i=1..20
0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
There are no Hamiltonian groups of order 25.
NumHamiltonianGroups⁡25
0
NumHamiltonianGroups⁡432
3
G≔HamiltonianGroup⁡432,2
G≔ < a permutation group on 22 letters with 5 generators >
IsHamiltonian⁡G
true
AllHamiltonianGroups⁡432,form=fpgroup
⁢i,j,_g,_a1,_a2,_a3⁢∣⁢_g2,_a13,_a23,_a33,i4,i2⁢j2,i⁢j⁢i-1⁢j,_a1-1⁢_g-1⁢_a1⁢_g,_a1-1⁢i-1⁢_a1⁢i,_a1-1⁢j-1⁢_a1⁢j,_a2-1⁢_a1-1⁢_a2⁢_a1,_a2-1⁢_g-1⁢_a2⁢_g,_a2-1⁢i-1⁢_a2⁢i,_a2-1⁢j-1⁢_a2⁢j,_a3-1⁢_a1-1⁢_a3⁢_a1,_a3-1⁢_a2-1⁢_a3⁢_a2,_a3-1⁢_g-1⁢_a3⁢_g,_a3-1⁢i-1⁢_a3⁢i,_a3-1⁢j-1⁢_a3⁢j,i-1⁢_g-1⁢i⁢_g,j-1⁢_g-1⁢j⁢_g⁢,⁢i,j,_g0,_a1,_a2⁢∣⁢_g02,_a13,i4,i2⁢j2,i⁢j⁢i-1⁢j,_a1-1⁢_g0-1⁢_a1⁢_g0,_a1-1⁢i-1⁢_a1⁢i,_a1-1⁢j-1⁢_a1⁢j,_a2-1⁢_a1-1⁢_a2⁢_a1,_a2-1⁢_g0-1⁢_a2⁢_g0,_a2-1⁢i-1⁢_a2⁢i,_a2-1⁢j-1⁢_a2⁢j,i-1⁢_g0-1⁢i⁢_g0,j-1⁢_g0-1⁢j⁢_g0,_a29⁢,⁢i,j,_g1,_a1⁢∣⁢_g12,i4,i2⁢j2,i⁢j⁢i-1⁢j,_a1-1⁢_g1-1⁢_a1⁢_g1,_a1-1⁢i-1⁢_a1⁢i,_a1-1⁢j-1⁢_a1⁢j,i-1⁢_g1-1⁢i⁢_g1,j-1⁢_g1-1⁢j⁢_g1,_a127⁢
The GroupTheory[HamiltonianGroup], GroupTheory[NumHamiltonianGroups] and GroupTheory[AllHamiltonianGroups] commands were introduced in Maple 2019.
For more information on Maple 2019 changes, see Updates in Maple 2019.
See Also
GroupTheory[IsHamiltonian]
GroupTheory[NumGroups]
Download Help Document
What kind of issue would you like to report? (Optional)