GroupTheory
IsElementary
attempt to determine whether a group is elementary Abelian
Calling Sequence
Parameters
Description
Examples
Compatibility
IsElementary( G )
G
-
a finite group
A group G is elementary if it is a finite Abelian group with prime exponent. Equivalently, G is elementary if it is a direct sum (product) of groups each of order equal to a fixed prime p.
The IsElementary( G ) command attempts to determine whether the group G is elementary. It returns true if G is elementary and returns false otherwise.
The group G must be an instance of a permutation group, a Cayley table group or a finite, finitely presented group.
with⁡GroupTheory:
G ≔ SmallGroup⁡32,1:
IsElementary⁡G
false
G ≔ SmallGroup⁡17,1:
true
IsElementary⁡DirectProduct⁡CyclicGroup⁡2$5
IsElementary⁡WreathProduct⁡CyclicGroup⁡2$5
G ≔ CayleyTableGroup⁡1|2|3|4,2|1|4|3,3|4|1|2,4|3|2|1
G≔ < a Cayley table group with 4 elements >
G ≔ CayleyTableGroup⁡1|2|3|4|5|6,2|1|4|3|6|5,3|5|1|6|2|4,4|6|2|5|1|3,5|3|6|1|4|2,6|4|5|2|3|1
G≔ < a Cayley table group with 6 elements >
IsElementary⁡a,b,c|a5,b5,c5,`.`⁡a,b=`.`⁡b,a,`.`⁡a,c=`.`⁡c,a,`.`⁡b,c=`.`⁡c,b
The GroupTheory[IsElementary] command was introduced in Maple 17.
For more information on Maple 17 changes, see Updates in Maple 17.
See Also
GroupTheory[IsAbelian]
Download Help Document