UnivariatePolynomial - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

PolynomialIdeals

 UnivariatePolynomial
 compute the smallest univariate polynomial in an ideal

 Calling Sequence UnivariatePolynomial(v, J, X)

Parameters

 v - variable name J - polynomial ideal or a list or set of generator polynomials X - (optional) set of variable names

Description

 • The UnivariatePolynomial command computes a univariate polynomial in v of least degree that is contained in the ideal J. If no such polynomial exists, then zero is returned. A zero-dimensional ideal contains a univariate polynomial in every variable.
 • The first argument must be the variable in which a univariate polynomial is to be computed.  The second argument must be a polynomial ideal. An optional third argument overrides the default ring variables.

Examples

 > $\mathrm{with}\left(\mathrm{PolynomialIdeals}\right):$
 > $J≔⟨{x}^{3}-{y}^{2},y-x⟩$
 ${J}{≔}⟨{y}{-}{x}{,}{{x}}^{{3}}{-}{{y}}^{{2}}⟩$ (1)
 > $\mathrm{UnivariatePolynomial}\left(x,J\right)$
 ${{x}}^{{3}}{-}{{x}}^{{2}}$ (2)
 > $K≔⟨{x}^{3}-{y}^{3}+1,{y}^{2}+2,12z{t}^{2}-2{t}^{3}+1⟩$
 ${K}{≔}⟨{{y}}^{{2}}{+}{2}{,}{-}{2}{}{{t}}^{{3}}{+}{12}{}{z}{}{{t}}^{{2}}{+}{1}{,}{{x}}^{{3}}{-}{{y}}^{{3}}{+}{1}⟩$ (3)
 > $\mathrm{UnivariatePolynomial}\left(x,K\right)$
 ${{x}}^{{6}}{+}{2}{}{{x}}^{{3}}{+}{9}$ (4)
 > $\mathrm{UnivariatePolynomial}\left(t,K\right)$
 ${0}$ (5)
 > $\mathrm{UnivariatePolynomial}\left(t,K,\left\{x,y,t\right\}\right)$
 ${2}{}{{t}}^{{3}}{-}{12}{}{z}{}{{t}}^{{2}}{-}{1}$ (6)
 > $\mathrm{IsZeroDimensional}\left(K,\left\{x,y,t\right\}\right)$
 ${\mathrm{true}}$ (7)
 > $\mathrm{alias}\left(\mathrm{α}=\mathrm{RootOf}\left({Z}^{3}+Z+1\right),\mathrm{β}=\mathrm{RootOf}\left({Z}^{5}+{Z}^{4}+2Z+3\right)\right)$
 ${\mathrm{\alpha }}{,}{\mathrm{\beta }}$ (8)
 > $L≔⟨6{x}^{2}\mathrm{β}+7{y}^{2}\mathrm{α}+3{x}^{4},-4{y}^{2}+4{x}^{2}{y}^{2}-6y{\mathrm{α}}^{3}⟩$
 ${L}{≔}⟨{3}{}{{x}}^{{4}}{+}{7}{}{{y}}^{{2}}{}{\mathrm{\alpha }}{+}{6}{}{{x}}^{{2}}{}{\mathrm{\beta }}{,}{-}{3}{}{y}{}{{\mathrm{\alpha }}}^{{3}}{+}{2}{}{{x}}^{{2}}{}{{y}}^{{2}}{-}{2}{}{{y}}^{{2}}⟩$ (9)
 > $\mathrm{UnivariatePolynomial}\left(x,L\right)$
 ${4}{}{{x}}^{{12}}{+}{16}{}{{x}}^{{10}}{}{\mathrm{\beta }}{+}{16}{}{{x}}^{{8}}{}{{\mathrm{\beta }}}^{{2}}{-}{8}{}{{x}}^{{10}}{-}{32}{}{{x}}^{{8}}{}{\mathrm{\beta }}{-}{32}{}{{x}}^{{6}}{}{{\mathrm{\beta }}}^{{2}}{+}{4}{}{{x}}^{{8}}{+}{16}{}{{x}}^{{6}}{}{\mathrm{\beta }}{+}{42}{}{{x}}^{{4}}{}{{\mathrm{\alpha }}}^{{2}}{+}{16}{}{{x}}^{{4}}{}{{\mathrm{\beta }}}^{{2}}{+}{84}{}{{x}}^{{2}}{}{{\mathrm{\alpha }}}^{{2}}{}{\mathrm{\beta }}{-}{21}{}{{x}}^{{4}}{-}{42}{}{{x}}^{{2}}{}{\mathrm{\beta }}$ (10)
 > $\mathrm{UnivariatePolynomial}\left(y,L\right)$
 ${-}{24}{}{{\mathrm{\alpha }}}^{{2}}{}{\mathrm{\beta }}{}{{y}}^{{3}}{+}{36}{}{{\mathrm{\alpha }}}^{{2}}{}{\mathrm{\beta }}{}{{y}}^{{2}}{-}{12}{}{{\mathrm{\alpha }}}^{{2}}{}{{y}}^{{3}}{+}{28}{}{{y}}^{{5}}{+}{36}{}{{\mathrm{\alpha }}}^{{2}}{}{{y}}^{{2}}{-}{24}{}{\mathrm{\beta }}{}{{y}}^{{3}}{-}{27}{}{{\mathrm{\alpha }}}^{{2}}{}{y}{-}{12}{}{{y}}^{{3}}{+}{27}{}{\mathrm{\alpha }}{}{y}{+}{27}{}{y}$ (11)