WhittakerM - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


WhittakerM

The Whittaker M function

WhittakerW

The Whittaker W function

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

WhittakerM(mu, nu, z)

WhittakerW(mu, nu, z)

Parameters

mu

-

algebraic expression

nu

-

algebraic expression

z

-

algebraic expression

Description

• 

The Whittaker functions WhittakerM(mu, nu, z) and WhittakerW(mu, nu, z) solve the differential equation

y''+14+μz+14ν2z2y=0

• 

They can be defined in terms of the hypergeometric and Kummer functions as follows:

WhittakerMμ,ν,z=ⅇ12zz12+νhypergeom12+νμ,1+2ν,z

WhittakerWμ,ν,z=ⅇ12zz12+νKummerU12+νμ,1+2ν,z

Examples

WhittakerM1,2,0.5

0.1606687379

(1)

diffWhittakerWμ,ν,z,z

12μzWhittakerWμ,ν,zWhittakerWμ+1,ν,zz

(2)

seriesWhittakerM2,3,x,x

x722x927+23x112448+Ox132

(3)

seriesWhittakerW12,13,x,x

33Γ232x162ππ3x56Γ232+93Γ232x764π3π3x11610Γ232+93Γ232x13616π3π3x17640Γ232+273Γ232x196224π9π3x236880Γ232+273Γ232x2561792π9π3x2967040Γ232+813Γ232x31646592π27π3x356239360Γ232+Ox376

(4)

simplifyWhittakerWμ+73,ν,x

μ16νν+μ16x2μ83WhittakerWμ23,ν,x+5μ2+4x+253μ+x2ν210x3+8936WhittakerWμ+13,ν,x

(5)

References

  

Abramowitz, M., and Stegun I. Handbook of Mathematical Functions. New York: Dover Publications.

  

Luke, Y. The Special Functions and Their Approximations. Vol 1. Academic Press, 1969.

See Also

hypergeom

inifcns

KummerU