LaplacianMatrix - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GraphTheory

  

LaplacianMatrix

  

compute Laplacian or Kirchhoff matrix

 

Calling Sequence

Parameters

Options

Description

Definition

Examples

Compatibility

Calling Sequence

LaplacianMatrix(G, options)

Parameters

G

-

graph

options

-

normalized, storage, datatype, or order

Options

The options argument can contain one or more of the options shown below.

• 

normalized=truefalse

  

If the option normalized is specified, then Laplacian matrix L is normalized so that Li,i=1 and Li,j=1didj if there is an edge from vertex i to vertex j and 0 otherwise.

• 

datatype, order, and storage

  

The Matrix options datatype, order, and storage may be specified.  The default values of these options are anything, C_order, and rectangular respectively. For information on the use of these options, see the Matrix help page.

Description

• 

The LaplacianMatrix command returns the Laplacian matrix L of a simple undirected graph G.  The Laplacian matrix is sometimes called the Kirchhoff matrix.  It is defined as follows:

Definition

• 

If G has n vertices and di is the degree of the ith vertex in G, then L is an n by n symmetric matrix where Li,i=di and Li,j is -1 if there is an edge from vertex i to vertex j and 0 otherwise.

Examples

withGraphTheory:

GPathGraph4

GGraph 1: an undirected graph with 4 vertices and 3 edge(s)

(1)

AdjacencyMatrixG

0100101001010010

(2)

LaplacianMatrixG

1−100−12−100−12−100−11

(3)

LaplacianMatrixG,normalized

1220022112001212200221

(4)

LaplacianMatrixG,normalized,datatype=float8

1.−0.7071067811865470.0.−0.7071067811865471.−0.5000000000000000.0.−0.5000000000000001.−0.7071067811865470.0.−0.7071067811865471.

(5)

Kirchhoff's theorem states that the number of spanning trees of a graph G is the product of the nonzero eigenvalues of the Laplacian matrix of G divided by n the number of vertices of G.  Let us verify that the triangle graph K3 has three spanning trees.

K3CompleteGraph3

K3Graph 2: an undirected graph with 3 vertices and 3 edge(s)

(6)

EdgesK3

1,2,1,3,2,3

(7)

nnumelemsVerticesK3

n3

(8)

LLaplacianMatrixK3

L2−1−1−12−1−1−12

(9)

ELinearAlgebra:-EigenvaluesL

E033

(10)

E2E3n

3

(11)

Compatibility

• 

The GraphTheory[LaplacianMatrix] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

See Also

AdjacencyMatrix

 


Download Help Document