EllipticModulus
Modulus function k(q)
Calling Sequence
Parameters
Description
Examples
EllipticModulus(q)
q
-
expression denoting a complex number such that
Given the Nome q, , entering the definition of Jacobi Theta functions, for instance
FunctionAdvisor(definition, JacobiTheta1)[1];
EllipticModulus computes the corresponding Modulus k, entering the definition of related elliptic integrals and JacobiPQ elliptic functions.
FunctionAdvisor(definition, EllipticF)[1];
FunctionAdvisor(definition, JacobiSN)[1];
FunctionAdvisor(definition, JacobiAM);
Alternatively, given the Modulus k, entering Elliptic integrals and JacobiPQ functions, it is possible to compute the corresponding Nome q, , using EllipticNome, which is the inverse function of EllipticModulus.
EllipticModulus is defined in terms of JacobiTheta functions by:
FunctionAdvisor( definition, EllipticModulus );
The JacobiPQ functions can be expressed in terms of JacobiTheta functions using EllipticNome
JacobiSN(z,k) = (1/(k^2))^(1/4) * JacobiTheta1(1/2*Pi*z/EllipticK(k),EllipticNome(k)) / JacobiTheta4(1/2*Pi*z/EllipticK(k),EllipticNome(k));
Alternative popular notations for elliptic integrals and JacobiPQ functions involve a parameter m or a modular angle alpha, as for instance in the Handbook of Mathematical Functions edited by Abramowitz and Stegun (A&S). These are related to k by and sin(alpha) = k. For example, the Elliptic function shown in A&S is numerically equal to the Maple command.
See Also
EllipticF
EllipticNome
FunctionAdvisor
Download Help Document