MatrixOrder - Maple Help

Groebner

 MatrixOrder
 compute matrices for monomial orders

 Calling Sequence MatrixOrder(tord, vars)

Parameters

 tord - ShortMonomialOrder vars - (optional) list of variables or a name

Description

 • The MatrixOrder command returns a matrix representation for a monomial order tord as a list of lists. If a list of variables is given as an optional second argument, the columns of the matrix are permuted to match the order of the variables.  If vars is a name, then the default permutation of the columns is assigned to vars.

Examples

 > $\mathrm{with}\left(\mathrm{Groebner}\right):$
 > $\mathrm{MatrixOrder}\left(\mathrm{plex}\left(x,y,z\right)\right)$
 $\left[\left[{1}{,}{0}{,}{0}\right]{,}\left[{0}{,}{1}{,}{0}\right]{,}\left[{0}{,}{0}{,}{1}\right]\right]$ (1)
 > $\mathrm{MatrixOrder}\left(\mathrm{plex}\left(x,y,z\right),\left[z,x,y\right]\right)$
 $\left[\left[{0}{,}{1}{,}{0}\right]{,}\left[{0}{,}{0}{,}{1}\right]{,}\left[{1}{,}{0}{,}{0}\right]\right]$ (2)
 > $\mathrm{MatrixOrder}\left(\mathrm{tdeg}\left(x,y,z\right),'\mathrm{vars}'\right)$
 $\left[\left[{1}{,}{1}{,}{1}\right]{,}\left[{0}{,}{0}{,}{-1}\right]{,}\left[{0}{,}{-1}{,}{0}\right]\right]$ (3)
 > $\mathrm{vars}$
 $\left[{x}{,}{y}{,}{z}\right]$ (4)
 > $\mathrm{MatrixOrder}\left(\mathrm{grlex}\left(x,y,z\right)\right)$
 $\left[\left[{1}{,}{1}{,}{1}\right]{,}\left[{1}{,}{0}{,}{0}\right]{,}\left[{0}{,}{1}{,}{0}\right]\right]$ (5)