L - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


orthopoly

  

L

  

Laguerre polynomial

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

L(n, a, x)

L(n, x)

Parameters

n

-

non-negative integer

a

-

rational number greater than -1 or nonrational algebraic expression

x

-

algebraic expression

Description

• 

The L(n, a, x) function computes the nth generalized Laguerre polynomial with parameter a evaluated at x.

  

In the two argument case, L(n, x) computes the nth Laguerre polynomial which is equal to L(n, 0, x).

• 

The generalized Laguerre polynomials are orthogonal on the interval 0,infinity with respect to the weight function wx=ⅇxxa. They satisfy:

0wtLm,a,tLn,a,tⅆt=0nmΓa+n+1n!n=m

• 

For positive integer a, Ln,a,x is related to Ln,x by:

Ln,a,x=1aⅆaⅆxaLn+a,x

  

Some references define the generalized Laguerre polynomials differently from Maple. Denote the alternate function as altLn,a,x. It is defined as:

altLn,a,x=ⅆaⅆxaaltLn,x

altLn,x=n!Ln,x

  

For a general positive integer a, the Maple orthopoly[L] function is related to altL by:

altLn,a,x=−1an!Lna,a,x

• 

Laguerre polynomials satisfy the following recurrence relation.

L0,a,x=1,

L1,a,x=x+1+a,

Ln,a,x=2n+a1xLn1,a,xnn+a1Ln2,a,xn,for n>1.

Examples

withorthopoly:

L3,x

13x+32x216x3

(1)

L15,5

19982258571307674368

(2)

L2,1,x

33x+12x2

(3)

L11,17,58

40912499266488426014273327119645385619965562847232

(4)

Using the alternate definition for the Laguerre polynomials:

altLn,a,x−1an!orthopolyLna,a,x:

altL3,1,x

3x2+18x18

(5)

See Also

GAMMA

LaguerreL