 Magma - Maple Programming Help

Home : Support : Online Help : Mathematics : Algebra : Magma : Magma/IsGroup

Magma

 IsGroup
 test whether a finite magma is a group

 Calling Sequence IsGroup( m )

Parameters

 m - Array representing the Cayley table of a finite magma

Description

 • The IsGroup command returns true if the given magma is a group, and returns false otherwise.
 • A group is an associative magma with an identity element, with respect to which identity each member has a (two-sided) inverse. Alternatively, a group is an associative loop.

Examples

 > $\mathrm{with}\left(\mathrm{Magma}\right):$
 > $m≔⟨⟨⟨1|2|3⟩,⟨2|3|1⟩,⟨3|1|2⟩⟩⟩$
 ${m}{≔}\left[\begin{array}{ccc}{1}& {2}& {3}\\ {2}& {3}& {1}\\ {3}& {1}& {2}\end{array}\right]$ (1)
 > $\mathrm{IsGroup}\left(m\right)$
 ${\mathrm{true}}$ (2)
 > $m≔⟨⟨⟨1|2|3⟩,⟨2|3|3⟩,⟨3|1|2⟩⟩⟩$
 ${m}{≔}\left[\begin{array}{ccc}{1}& {2}& {3}\\ {2}& {3}& {3}\\ {3}& {1}& {2}\end{array}\right]$ (3)
 > $\mathrm{IsGroup}\left(m\right)$
 ${\mathrm{false}}$ (4)

Compatibility

 • The Magma[IsGroup] command was introduced in Maple 15.