PopovForm - Maple Help

Online Help

All Products    Maple    MapleSim


MatrixPolynomialAlgebra

  

PopovForm

  

compute the Popov normal form of a Matrix

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

PopovForm(A, x, shifts, out)

PopovForm[row](A, x, shifts, out)

PopovForm[column](A, x, shifts, out)

Parameters

A

-

Matrix

x

-

variable name of the polynomial domain

shifts

-

(optional) equation of the form shifts = obj where obj is a list of one or two lists

out

-

(optional) equation of the form output = obj where obj is one of 'P', 'U', 'rank', 'P_pivots', 'U_pivots' or a list containing one or more of these names; select result objects to compute

Description

• 

The PopovForm(A,x) and PopovForm[row](A,x) commands compute the Popov normal form (in row form) of an m x n rectangular Matrix of univariate polynomials in x over the field of rational numbers Q, or rational expressions over Q (that is, univariate polynomials in x with coefficients in Q(a1,...,an)).

• 

The PopovForm[column](A,x) command computes the Popov normal form (in column form).

• 

For row Popov normal form, if m = n and P is nonsingular, then P has the following degree constraints

degPj,i<degPi,i,for all i > j

degPj,idegPi,i,for all i < j

  

If m<n and P has full row rank, then there is a trailing list of n pivot columns P_pivots such that P[*,P_pivots] is in Popov normal form.

  

If nm and P has row rank r<n, then P has the first nr rows 0 and there is a trailing list of r columns P_pivots such that P[*,P_pivots] is in Popov normal form. In this case U is a minimal unimodular multiplier and as such there is a list U_pivots of columns such that U[*,U_pivots] is also in Popov normal form.

  

The row Popov normal form is obtained by performing elementary row operations on A. This includes interchanging rows, multiplying a row by a unit, and subtracting a polynomial multiple of one row from another. The method used is a fraction-free algorithm by Beckermann, Labahn and Villard. The returned Matrix objects have the property that P=U·A for row Popov normal form.

• 

The output option (out) determines the content of the returned expression sequence.

  

As determined by the out option, an expression sequence containing one or more of the factors P (the Popov normal form), U (the unimodular transformation Matrix), rank (the rank of the matrix), P_pivots, or U_pivots (the pivot columns of P and U, respectively -- interesting in the non-full rank case) is returned. If obj is a list, the objects are returned in the order specified in the list.

• 

The shifts option is an optional input that allows the user to shift the degree constraints on both the Popov form and the minimal multiplier (in the non-full row rank case).

• 

The row Popov normal form and the column Popov normal form is related in the following way.  If P is the row Popov normal form of A, P^T is the column Popov normal form of A^T.

Examples

withMatrixPolynomialAlgebra&colon;

Az3z2&comma;z32z2+2z2|z32z21&comma;z33z2+3z4

Az3z2z32z21z32z2+2z2z33z2+3z4

(1)

PPopovFormrowA&comma;z

Pz2z+10121

(2)

P,UPopovFormrowA&comma;z&comma;output=P&comma;U

P,Uz2z+10121,12z3+32z232z+212z3z212z4z414

(3)

mapexpand&comma;PU·A

0000

(4)

LinearAlgebraDeterminantU

12

(5)

PPopovFormcolumnA&comma;z

Pz−111+z

(6)

P,UPopovFormcolumnA&comma;z&comma;output=P&comma;U

P,Uz−111+z,12z2+32z1212z212z3212z2zz22+1

(7)

mapexpand&comma;PA·U

0000

(8)

LinearAlgebraDeterminantU

12

(9)

Low rank matrix:

A3z6&comma;3z+3&comma;2z+3&comma;z|3z&comma;3z&comma;2&comma;1|6&comma;3&comma;2z1&comma;z+1

A3z63z63z+33z−32z+3−22z1z−1z+1

(10)

P,U,rPopovFormrowA&comma;z&comma;output=P&comma;U&comma;rank

P,U,r000000−110−101,3z2+32z+33z2+32z+6z209292121323z323z1203300,2

(11)

P,U,r,II,KPopovFormrowA&comma;z&comma;output=P&comma;U&comma;rank&comma;P_pivots&comma;U_pivots

P,U,r,II,K000000−110−101,3z2+32z+33z2+32z+6z209292121323z323z1203300,2,2&comma;3,2&comma;4

(12)

P,U,rPopovFormcolumnA&comma;z&comma;output=P&comma;U&comma;rank

P,U,r0z−60z30231+2z0131+z,1011131100,2

(13)

P,U,r,II,KPopovFormcolumnA&comma;z&comma;output=P&comma;U&comma;rank&comma;P_pivots&comma;U_pivots

P,U,r,II,K0z−60z30231+2z0131+z,1011131100,2,2&comma;4,3

(14)

[1,-2,0]-shifted Popov form:

P,U,r,II,KPopovFormrowA&comma;z&comma;shifts=1&comma;2&comma;0&comma;output=P&comma;U&comma;rank&comma;P_pivots&comma;U_pivots

P,U,r,II,K000000−110−101,3z2+32z+33z2+32z+6z209292121323z323z1203300,2,2&comma;3,2&comma;4

(15)

[2,2,0,0]-shifted Popov form:

P,U,r,II,KPopovFormcolumnA&comma;z&comma;shifts=2&comma;2&comma;0&comma;0&comma;output=P&comma;U&comma;rank&comma;P_pivots&comma;U_pivots

P,U,r,II,K0z2+z22z2+z+40z2z+12z2z2010001,113231z312z3100,2,3&comma;4,3

(16)

Popov form with [0,-3]-shift for unimodular multiplier:

Az3+4z2+z+1&comma;z2+7z+4|z1&comma;z+2|2z2+2z2&comma;z2+6z+6|z2&comma;2z

Az3+4z2+z+11+z2z2+2z2z2z2+7z+4z+2z2+6z+62z

(17)

P,U,r,II,KPopovFormrowA&comma;z&comma;shifts=0&comma;0&comma;0&comma;0&comma;0&comma;3&comma;output=P&comma;U&comma;rank&comma;P_pivots&comma;U_pivots

P,U,r,II,Kz36z2+13z+7z+514+10zz24zz2+7z+4z+2z2+6z+62z,−1201,2,1&comma;3,

(18)

mapexpand&comma;PU·A

00000000

(19)

LinearAlgebraDeterminantU

−1

(20)

Popov form with [0,-3,0,0]-shift for unimodular multiplier:

P,U,r,II,KPopovFormcolumnA&comma;z&comma;shifts=0&comma;0&comma;0&comma;3&comma;0&comma;0&comma;output=P&comma;U&comma;rank&comma;P_pivots&comma;U_pivots

P,U,r,II,K00z−1002z,2z21+17z22z27+z7z213710002z2137z2zz7+17z21+27221z213z421z39z7z27+97121z2+13z2321,2,1&comma;2,2&comma;4

(21)

mapexpand&comma;PA·U

00000000

(22)

References

  

Beckermann, B., and Labahn, G. "Fraction-free Computation of Matrix Rational Interpolants and Matrix GCDs." SIAM Journal on Matrix Analysis and Applications. Vol. 22 No. 1, (2000):114-144.

  

Beckermann, B.; Labahn, G.; and Villard, G. "Shifted Normal Forms of General Polynomial Matrices." University of Waterloo, Technical Report, Department of Computer Science, (2001).

  

Beckermann, B.; Labahn, G.; and Villard, G. "Shifted Normal Forms of Polynomial Matrices" ISSAC'99 (1999): 189-196.

See Also

expand

indets

LinearAlgebra[Determinant]

map

Matrix

MatrixPolynomialAlgebra

MatrixPolynomialAlgebra[HermiteForm]