RandomBipartiteGraph - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


GraphTheory[RandomGraphs]

  

RandomBipartiteGraph

  

generate a random bipartite graph

 

Calling Sequence

Parameters

Options

Description

Examples

Compatibility

Calling Sequence

RandomBipartiteGraph(n,p,options)

RandomBipartiteGraph(n,m,options)

RandomBipartiteGraph([a,b],p,options)

RandomBipartiteGraph([a,b],m,options)

Parameters

n, a, b

-

positive integers

p

-

numeric value between 0.0 and 1.0

m

-

non-negative integer

options

-

(optional) equation(s) of the form option=value where option is one of seed or weights

Options

• 

directed = truefalse

  

Specifies whether the graph should be directed. The default is false.

• 

seed = integer or none

  

Seed for the random number generator. When an integer is specified, this is equivalent to calling randomize(seed).

• 

weights = range or procedure

  

If the option weights=m..n is specified, where mn are integers, the graph is a weighted graph with edge weights chosen from [m,n] uniformly at random.  The weight matrix W in the graph has datatype=integer, and if the edge from vertex i to j is not in the graph then W[i,j] = 0.

  

If the option weights=x..y where xy are decimals is specified, the graph is a weighted graph with numerical edge weights chosen from [x,y] uniformly at random.  The weight matrix W in the graph has datatype=float[8], that is, double precision floats (16 decimal digits), and if the edge from vertex i to j is not in the graph then W[i,j] = 0.0.

  

If the option weights=f where f is a function (a Maple procedure) that returns a number (integer, rational, or decimal number), then f is used to generate the edge weights.  The weight matrix W in the graph has datatype=anything, and if the edge from vertex i to j is not in the graph then W[i,j] = 0.

Description

• 

RandomBipartiteGraph(n, p) creates an unweighted bipartite graph on n vertices where each possible edge is present with probability p.

• 

RandomBipartiteGraph(n, m) creates an unweighted bipartite graph on n vertices and m edges where the m edges are chosen uniformly at random.

• 

RandomBipartiteGraph([a,b], p) creates an unweighted bipartite graph on a+b vertices with partite sets of sizes a and b, where each possible edge is present with probability p.

• 

RandomBipartiteGraph([a,b], m) creates an unweighted bipartite graph on a+b vertices with partite sets of sizes a and b, and with m edges chosen uniformly at random.

• 

By default, the created bipartite graph is undirected. If the option directed or directed=true is given, the resulting graph is directed.

• 

The random number generator used can be seeded using the seed option or the randomize function.

Examples

withGraphTheory:

withRandomGraphs:

GRandomBipartiteGraph10,0.5

GGraph 1: an undirected graph with 10 vertices and 8 edge(s)

(1)

IsBipartiteG,p

true

(2)

p

1,2,3,4,5,6,7,8,9,10

(3)

GRandomBipartiteGraph2,3,1.0

GGraph 2: an undirected graph with 5 vertices and 6 edge(s)

(4)

NeighborsG

3,4,5,3,4,5,1,2,1,2,1,2

(5)

GRandomBipartiteGraph2,2,4,weights=1..10

GGraph 3: an undirected weighted graph with 4 vertices and 4 edge(s)

(6)

WeightMatrixG

0067007967007900

(7)

HRandomBipartiteGraph7,11,45

HGraph 4: an undirected graph with 18 vertices and 46 edge(s)

(8)

ChromaticIndexH

8

(9)

Compatibility

• 

The GraphTheory[RandomGraphs][RandomBipartiteGraph] command was updated in Maple 2021.

• 

The directed option was introduced in Maple 2021.

• 

For more information on Maple 2021 changes, see Updates in Maple 2021.

See Also

AssignEdgeWeights

GraphTheory:-ChromaticIndex

GraphTheory:-IsBipartite

GraphTheory:-Neighbors

GraphTheory:-WeightMatrix

RandomDigraph

RandomGraph

RandomNetwork

RandomTournament

RandomTree