 Variance - Maple Help

ScientificErrorAnalysis

 Variance
 return the variance of a quantity-with-error Calling Sequence Variance( obj ) Parameters

 obj - quantity-with-error Description

 • The Variance( obj ) command returns the variance of the quantity-with-error obj.
 • The quantity-with-error obj can have functional dependence on other quantities-with-error.
 If the quantity-with-error obj does not have functional dependence on other quantities-with-error, the uncertainty of obj is accessed and converted to the variance (by squaring).
 If the quantity-with-error obj has functional dependence on other quantities-with-error, the variance is calculated using the usual formula of error analysis involving a first-order expansion with the dependent form and covariances between the other quantities-with-error. This process can be recursive.
 The variance ${u}^{2\left(y\right)}$ in $y$, where $y$ depends on the ${x}_{i}$, is

${u\left(y\right)}^{2}=\left(\sum _{i=1}^{N}{\left(\frac{ⅆy}{ⅆ{x}_{i}}\right)}^{2}{u\left({x}_{i}\right)}^{2}\right)+2\left(\sum _{i=1}^{N-1}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\sum _{j=i+1}^{N}\left(\frac{ⅆy}{ⅆ{x}_{i}}\right)\left(\frac{ⅆy}{ⅆ{x}_{j}}\right)u\left({x}_{i},{x}_{j}\right)\right)$

 where $u\left({x}_{i}\right)$ is the error in ${x}_{i}$, $u\left({x}_{i},{x}_{j}\right)$ is the covariance between ${x}_{i}$ and ${x}_{j}$, and the partials are evaluated at the central values of the ${x}_{i}$.
 • Variances involving physical constants are calculated naturally and correctly in the implied system of units because central values and errors are obtained from the interface to ScientificConstants. Examples

 > $\mathrm{with}\left(\mathrm{ScientificConstants}\right):$
 > $\mathrm{with}\left(\mathrm{ScientificErrorAnalysis}\right):$
 > $a≔\mathrm{Quantity}\left(10.,2.\right):$
 > $\mathrm{Variance}\left(a\right)$
 ${4.}$ (1)
 > $\mathrm{GetConstant}\left(h\right)$
 ${\mathrm{Planck_constant}}{,}{\mathrm{symbol}}{=}{h}{,}{\mathrm{value}}{=}{6.626070040}{×}{{10}}^{{-34}}{,}{\mathrm{uncertainty}}{=}{8.1}{×}{{10}}^{{-42}}{,}{\mathrm{units}}{=}{J}{}{s}$ (2)
 > $\mathrm{Variance}\left(\mathrm{Constant}\left(h\right)\right)$
 ${6.561}{×}{{10}}^{{-83}}$ (3)
 > $\mathrm{GetConstant}\left({m}_{e}\right)$
 ${\mathrm{electron_mass}}{,}{\mathrm{symbol}}{=}{{m}}_{{e}}{,}{\mathrm{derive}}{=}\frac{{2}{}{{R}}_{{\mathrm{\infty }}}{}{h}}{{c}{}{{\mathrm{\alpha }}}^{{2}}}$ (4)
 > $\mathrm{Variance}\left(\mathrm{Constant}\left({m}_{e}\right)\right)$
 ${1.241654324}{×}{{10}}^{{-76}}$ (5)
 > ${\mathrm{GetError}\left(\mathrm{Constant}\left({m}_{e}\right)\right)}^{2}$
 ${1.241654323}{×}{{10}}^{{-76}}$ (6)