Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
DEtools[regularsp] - compute the regular singular points of a second order non-autonomous linear ODE
Calling Sequence
regularsp(des, ivar, dvar)
Parameters
des
-
second order linear ordinary differential equation or its list form
ivar
indicates the independent variable when des is a list with the ODE coefficients
dvar
indicates the dependent variable, required only when des is an ODE and the dependent variable is not obvious
Description
Important: The regularsp command has been deprecated. Use the superseding command DEtools[singularities], which computes both the regular and irregular singular points, instead.
The regularsp command determines the regular singular points of a given second order linear ordinary differential equation. The ODE could be given as a standard differential equation or as a list with the ODE coefficients (see DEtools[convertAlg]). Given a linear ODE of the form
p(x) y''(x) + q(x) y'(x) + r(x) y(x) = 0, p(x) <> 0, p'(x) <> 0
a point alpha is considered to be a regular singular point if
1) alpha is a singular point,
2) limit( (x-alpha)*q(x)/p(x), x=alpha ) = 0 and
limit( (x-alpha)^2*r(x)/p(x), x=alpha ) = 0.
The results are returned in a list. In the event that no regular singular points are found, an empty list is returned.
Examples
An ordinary differential equation (ODE)
Warning, DEtools[regularsp] has been superseded by DEtools[singularities]
The coefficient list form
You can convert convert an ODE to the coefficient list form using DEtools[convertAlg] form
See Also
DEtools, DEtools[convertAlg], DEtools[indicialeq], DEtools[singularities]
Download Help Document