Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
Statistics[AbsoluteDeviation] - compute the average absolute deviation from a given point
Calling Sequence
AbsoluteDeviation(A, b, ds_options)
AbsoluteDeviation(M, bs, ds_options)
AbsoluteDeviation(X, p, rv_options)
Parameters
A
-
Array; data sample
M
Matrix; Matrix data set
X
algebraic; random variable or distribution
b
real number; base point
bs
real number or list of real numbers; base points
p
algebraic expression; base point
ds_options
(optional) equation(s) of the form option=value where option is one of ignore, or weights; specify options for computing the absolute deviation of a data set
rv_options
(optional) equation of the form numeric=value; specifies options for computing the absolute deviation of a random variable
Description
The AbsoluteDeviation function computes the average absolute deviation of the specified random variable or data set from the specified base point.
The first parameter can be a data set (represented as an Array or a Matrix data set), a distribution (see Statistics[Distribution]), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable]).
The parameter b must be a real number in the first calling sequence. In the second calling sequence, bs can be a real number or a list of real numbers; a list gives the base points for respective columns of the Matrix data set. If bs is a single real number, then the base point is the same for all columns. In the third calling sequence, p can be any expression of type/algebraic.
Computation
All computations involving data are performed in floating-point; therefore, all data provided must have type realcons and all returned solutions are floating-point, even if the problem is specified with exact values.
By default, all computations involving random variables are performed symbolically (see option numeric below).
For more information about computation in the Statistics package, see the Statistics[Computation] help page.
Data Set Options
The ds_options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[DescriptiveStatistics] help page.
ignore=truefalse -- This option controls how missing data is handled by the AbsoluteDeviation command. Missing items are represented by undefined or Float(undefined). So, if ignore=false and A contains missing data, the AbsoluteDeviation command will return undefined. If ignore=true all missing items in A will be ignored. The default value is false.
weights=Vector -- Data weights. The number of elements in the weights array must be equal to the number of elements in the original data sample. By default all elements in A are assigned weight .
Random Variable Options
The rv_options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[RandomVariables] help page.
numeric=truefalse -- By default, the absolute deviation is computed symbolically. To compute the absolute deviation numerically, specify the numeric or numeric = true option.
Compatibility
The M and bs parameters were introduced in Maple 16.
For more information on Maple 16 changes, see Updates in Maple 16.
Examples
Compute the average absolute deviation of the beta distribution with parameters 3 and 5 from point .
Generate a random sample of size 100000 drawn from the above distribution and compute the sample absolute deviation from .
Compute the standard error of the sample absolute deviation from for the normal distribution with parameters 5 and 2.
Create a beta-distributed random variable and compute the average absolute deviation of from .
Verify this using simulation.
Compute the average absolute deviation of a weighted data set.
Consider the following Matrix data set.
We compute the average absolute deviation from a fixed number.
It might be more useful to take the average absolute deviation from three different numbers.
See Also
Statistics, Statistics[Computation], Statistics[DescriptiveStatistics], Statistics[Distributions], Statistics[ExpectedValue], Statistics[RandomVariables], Statistics[StandardError]
References
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
Download Help Document