Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
LinearAlgebra[FrobeniusForm] - reduce a square Matrix to Frobenius form (rational canonical form)
Calling Sequence
FrobeniusForm(A, out, options, outopts)
RationalCanonicalForm(A, out, options, outopts)
Parameters
A
-
Matrix
out
(optional) equation of the form output = obj where obj is one of 'F' or 'Q', or a list containing one or more of these names; selects result objects to compute
options
(optional); constructor options for the result object(s)
outopts
(optional) equation(s) of the form outputoptions[o] = list where o is one of 'F' or 'Q'; constructor options for the specified result object
Description
The FrobeniusForm(A) command returns the Frobenius form F of square Matrix A.
This function can also be invoked using the RationalCanonicalForm command.
The Frobenius form Matrix F has the following structure:
F = DiagonalMatrix([C[1], C[2],..., C[k]])
where the are companion Matrices associated with polynomials where the are a factorization of the characteristic polynomial of A with the property that divides , for = 2..k.
The Frobenius form defined in this way is unique (if you require that divides ).
The columns of Q form a rational canonical basis for A.
The output option (out) determines the content of the returned expression sequence.
Depending on what is included in the output option, an expression sequence containing one or more of the factors F (the Frobenius form), or Q (the transformation Matrix) can be returned. If output is a list, the objects are returned in the same order as specified in the list.
The returned Matrix objects have the property that .
The constructor options provide additional information (readonly, shape, storage, order, datatype, and attributes) to the Matrix constructor that builds the result(s). These options may also be provided in the form outputoptions[o]=[...], where [...] represents a Maple list. If a constructor option is provided in both the calling sequence directly and in an outputoptions[o] option, the latter takes precedence (regardless of the order).
The following list indicates permissible values for index [o] of outputoptions with their corresponding meaning.
F
Frobenius form
Q
transformation Matrix
Examples
See Also
LinearAlgebra, LinearAlgebra[CharacteristicPolynomial], LinearAlgebra[CompanionMatrix], LinearAlgebra[DiagonalMatrix], LinearAlgebra[MatrixInverse], Matrix
Download Help Document