Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
RegularChains[ChainTools][Regularize] - make a polynomial regular or null with respect to a regular chain
Calling Sequence
Regularize(p, rc, R)
Regularize(p, rc, R, 'normalized'='yes')
Regularize(p, rc, R, 'normalized'='strongly')
Parameters
p
-
polynomial of R
rc
regular chain of R
R
polynomial ring
'normalized'='yes'
(optional) boolean flag
'normalized'='strongly'
Description
The command Regularize(p, rc, R) returns a list made of two lists. The first one consists of regular chains such that p is regular modulo the saturated ideal of . The second one consists of regular chains such that p is null modulo the saturated ideal of .
In addition, the union of the regular chains of these lists is a decomposition of rc in the sense of Kalkbrener.
If 'normalized'='yes' is passed, all the returned regular chains are normalized.
If 'normalized'='strongly' is passed, all the returned regular chains are strongly normalized.
If 'normalized'='yes' is present, rc must be normalized.
If 'normalized'='strongly' is present, rc must be strongly normalized.
The command RegularizeDim0 implements another algorithm with the same purpose as that of the command Regularize. However it is specialized to zero-dimensional regular chains in prime characteristic. When both algorithms apply, the latter usually outperforms the former one.
This command is part of the RegularChains[ChainTools] package, so it can be used in the form Regularize(..) only after executing the command with(RegularChains[ChainTools]). However, it can always be accessed through the long form of the command by using RegularChains[ChainTools][Regularize](..).
Examples
See Also
Chain, Empty, Equations, Inverse, IsRegular, IsStronglyNormalized, PolynomialRing, RegularChains, RegularizeDim0, RegularizeInitial, SparsePseudoRemainder
Download Help Document