Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
RegularChains[ParametricSystemTools][DiscriminantSequence] - Compute the discriminant sequence of a polynomial
Calling Sequence
DiscriminantSequence(p, v, R)
DiscriminantSequence(p, q, v, R)
Parameters
R
-
polynomial ring
p
polynomial of R
q
v
variable of R
Description
When input is only one polynomial p, the result of this function call is the list of polynomials in R which is the discriminant sequence of p regarded as a univariate polynomial in v; otherwise the discriminant sequence of p and q.
For a univariate polynomial p of degree n, its discriminant sequence is a list of n polynomials in the coefficients of p. The signs of these polynomials determine the number of distinct complex (real) zeros of p. The discriminant sequence of two polynomials p and q, together with the discriminant sequence of p, can help determining the number of distinct real roots of p=0 such that q>0 or q<0. For the details, please see the reference listed below.
Examples
See Also
BorderPolynomial, ComplexRootClassification , RealRootClassification, RegularChains
References
Yang, L., "Recent advances in determining the number of real roots of parametric polynomials", J. Symb. Compt. vol. 28, pp. 225--242, 1999.
Download Help Document