Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
LinearAlgebra[Modular][CharacteristicPolynomial] - Compute the characteristic polynomial of a square matrix mod p
Calling Sequence
CharacteristicPolynomial(m, A, lambda)
Parameters
m
-
modulus
A
square matrix
lambda
variable name to use for characteristic polynomial
Description
The CharacteristicPolynomial function computes the characteristic polynomial of a matrix mod m. Note that the matrix A need not have entries in the positive range , as the routine needs to make a copy of the matrix for the computation, and does so using Mod. Upon successful completion, the characteristic polynomial of A mod m in lambda is returned.
A number of different algorithms and implementations are in use, each with significantly different efficiency, so it is important to describe these here.
If m is a prime number with fewer than 100 digits (the digit limitation is present only to guarantee that the primality check is not too expensive) then the Hessenberg algorithm is used. This is a reduction-like routine, in which the matrix is 'reduced' to Hessenberg form, and the characteristic polynomial is computed from this form.
Furthermore, if the prime is sufficiently small so that the Modular package can work with a hardware datatype (either integer[] or float[8]), then an efficient external routine is used for the computation, making it quite fast.
In the event that the modulus m is not prime, or greater than 100 digits in length, the Berkowitz algorithm is used. Unlike the Hessenberg implementation, the Berkowitz implementation uses no external code, so it is noticeably slower for comparable problems, as demonstrated in the examples.
This command is part of the LinearAlgebra[Modular] package, so it can be used in the form CharacteristicPolynomial(..) only after executing the command with(LinearAlgebra[Modular]). However, it can always be used in the form LinearAlgebra[Modular][CharacteristicPolynomial](..).
Examples
Compute the characteristic polynomial using external Hessenberg and Berkowitz, and compare the timings.
First Hessenberg with prime modulus
Next Berkowitz with composite modulus
Factor of time faster for Hessenberg
See Also
LinearAlgebra/Details, LinearAlgebra[Modular], LinearAlgebra[Modular][IntegerCharacteristicPolynomial], LinearAlgebra[Modular][Mod]
Download Help Document