Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
OreTools[Consequences][MinimalEquation] - construct minimal equation (y1-consequence) for a given system and a given function
OreTools[Consequences][ReducedSystem] - reduce a given system with respect to a given subset of its undetermined functions
Calling Sequence
MinimalEquation(M, n, A)
ReducedSystem(M, ns, A)
Parameters
M
-
Matrix of a given system
n
a positive integer - index of the undetermined function with respect to which the minimal equation is to be constructed
ns
set of positive integers - indices of the undetermined functions with respect to which the system is to be reduced
A
Ore algebra; to define an Ore algebra, use the SetOreRing function.
Description
The MinimalEquation constructs minimal equation (y1-consequence) for the given system corresponding to the matrix M and Ore algebra A and a given function with the index n of its undetermined functions. The minimal equation is a scalar equation whose solution is the component of some solution of the given system corresponding to the given function. The output is OrePoly L, such that is the y1-consequence, i.e. the minimal equation such that its solution is the n-th element of some solution of the given system.
The ReducedSystem reduces the given system corresponding to the matrix M and Ore algebra A with respect to a given subset ns of its undetermined functions. The reduced system is a system which contains the given subset of the undetermined functions of the given system among its undetermined functions and components of its closed form solution corresponding to the given subset are components of some solution of the given system. It addresses the following problem: given a subset of the components of solutions to be found and an appropriate class of functions, find all solutions whose specified components are in the given class (more precisely we are interested in computing those components only). For example, given a differential system, find all the rational functions that are first and second components of a solution of the system. The output is , where R is the matrix of the reduced system and s is the set of pairs, the first element of each is the index out of ns and the second one is the index of the same undetermined function in the reduced system.
Examples
See Also
OreTools, OreTools/OreAlgebra, OreTools/OrePoly
Download Help Document