Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
SNAP[QRGCD] - compute GCD for a pair of univariate numeric polynomials by using QR factoring
Calling Sequence
QRGCD(f, g, x, eps)
Parameters
f, g
-
univariate numeric polynomials
x
name; indeterminate for f and g
eps
type numeric and non-negative; stability parameter
Description
The QRGCD(f, g, x, eps) function returns univariate numeric polynomials u,v,d such that d is an approximate-GCD for the input polynomials (f, g). (See [1] for the definition of an approximate-GCD.)
With high probability, the output polynomials satisfy || u * f + v * g - d || < ||(f,g,u,v,d)|| * eps, || f - d * f1 || < ||f|| * eps, and || g - d * g1 || < ||g|| * eps, where the polynomials f1 and f2 are cofactors of f and g with respect to the divisor d.
The output polynomials u and v satisfy deg(u) < deg(g) - deg(d) and deg(v) < deg(f) - deg(d).
Examples
See Also
SNAP[DistanceToCommonDivisors], SNAP[EpsilonGCD], SNAP[QuasiGCD]
References
Corless, R. M.; Watt, S. M.; and Zhi, L. "QR Factoring to compute the GCD of Univariate Approximate Polynomials." IEEE Transactions on Signal Processing. Vol. 52(12), (2004): 3394-3402.
Download Help Document