Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
DifferentialGeometry:-Tools[DGequal]
Calling Sequence
DGequal(S1, S2)
Parameters
S1, S2
-
two lists of vectors, differential forms, or tensors; two transformations; two Lie algebra data structures; or two representations
Description
Let S1 and S2 be two lists of vectors, differential forms, or tensors. If every element of S1 is in the span of S2 and every element of S1 is in the span of S2, then DGequal(S1, S2) returns true and otherwise false.
If the two transformations Phi1 and Phi2 have the same domain frame, range frame, and the same coordinate expressions, then DGequal(Phi1, Phi2) returns true and otherwise false. The command DGequal(Phi1, Phi2) computes the differences between the Jacobian matrices and the coordinate equations for the two transformations Phi1 and Phi2 and tests if these differences are zero.
This command is part of the DifferentialGeometry:-Tools package, and so can be used in the form DGequal(...) only after executing the commands with(DifferentialGeometry) and with(Tools) in that order. It can always be used in the long form DifferentialGeometry:-Tools:-DGequal.
Examples
Example 1.
First initialize a 4-dimensional manifold M with coordinates [x, y, z, w].
Show that the vector subspaces spanned by the lists of vectors S1 and S2 are the same.
Show that the subspaces of differential forms spanned by the lists of 2-forms S3 and S4 are not the same.
Example 2.
First initialize manifolds M and N with coordinates [x, y] and [u, v].
Show that the transformations Phi1 and Phi2 are the same.
Show that the transformations Phi3 and Phi4 are not the same without assuming that x > 0.
Example 3.
Define two Lie algebras data structures. Check that they are equal.
Example 4.
Define two representations of a Lie algebra and test for equality. First define the Lie algebra.
Define the representation space V.
Make a change of basis in the representation space.
The representations rho1 and rho2 are equivalent but they are not equal.
See Also
DifferentialGeometry, Tools, LieAlgebras, LieAlgebraData Representation, Transformation
Download Help Document