LommelS1 - the Lommel function s
LommelS2 - the Lommel function S
|
Calling Sequence
|
|
LommelS1(mu, nu, z)
LommelS2(mu, nu, z)
|
|
Parameters
|
|
mu
|
-
|
algebraic expression
|
nu
|
-
|
algebraic expression
|
z
|
-
|
algebraic expression
|
|
|
|
|
Description
|
|
•
|
The LommelS1(mu, nu, z) function is defined in terms of the hypergeometric function
|
>
|
FunctionAdvisor( definition, LommelS1);
|
![[LommelS1(a, b, z) = z^(a+1)*hypergeom([1], [3/2-(1/2)*b+(1/2)*a, 3/2+(1/2)*b+(1/2)*a], -(1/4)*z^2)/((a-b+1)*(a+b+1)), And(-a+b-1 <> 0, a+b+1 <> 0, (3/2-(1/2)*b+(1/2)*a)::(Not(nonposint)), (3/2+(1/2)*b+(1/2)*a)::(Not(nonposint)))]](/support/helpjp/helpview.aspx?si=6311/file00692/math82.png)
| (1) |
|
and LommelS2(mu, nu, z) is defined in terms of LommelS1(mu, nu, z) and Bessel functions.
|
>
|
LommelS2(mu,nu,z) = convert(LommelS2(mu,nu,z), LommelS1);
|

| (2) |
•
|
These functions solve the non-homogeneous linear differential equation of second order.
|
>
|
z^2*diff(f(z),`$`(z,2))+z*diff(f(z),z)+(z^2-nu^2)*f(z) = z^(mu+1);
|
| (3) |
|
The Lommel functions also solve the following third order linear homogeneous differential equation with polynomial coefficients.
|
>
|
FunctionAdvisor( DE, LommelS1(mu,nu,z));
|
![[f(z) = LommelS1(mu, nu, z), [diff(f(z), `$`(z, 3)) = (mu-2)*(diff(f(z), `$`(z, 2)))/z+(-z^2+mu+nu^2)*(diff(f(z), z))/z^2+((mu-1)*z^2-nu^2*(mu+1))*f(z)/z^3]]](/support/helpjp/helpview.aspx?si=6311/file00692/math116.png)
| (4) |
|
|
Examples
|
|
The AngerJ and WeberE, StruveH and StruveL functions can be viewed as particular cases of LommelS1.
>
|
|
| (5) |
>
|
|
| (6) |
>
|
|
| (7) |
>
|
|
| (8) |
A MeijerG representation for the Lommel functions.
>
|
|
![LommelS1(mu, nu, z) = 2^(mu-1)*GAMMA((1/2)*mu+(1/2)*nu+1/2)*GAMMA((1/2)*mu-(1/2)*nu+1/2)*MeijerG([[(1/2)*mu+1/2], []], [[(1/2)*mu+1/2], [(1/2)*nu, -(1/2)*nu]], (1/4)*z^2)](/support/helpjp/helpview.aspx?si=6311/file00692/math176.png)
| (9) |
>
|
|
| (10) |
The series expansion of the Lommel functions is not computable using the series command because it would involve factoring out abstract powers, leading to a result of the form z^mu1*series_1 + z^mu2*series_2 + .... This type of extended series expansion, however, can be computed using the Series command of the MathematicalFunctions package.
>
|
|
| (11) |
>
|
|

| (12) |
>
|
|

| (13) |
|
|
References
|
|
|
Abramowitz, M., and Stegun, I., eds. Handbook of Mathematical Functions. New York: Dover publications.
|
|
Gradshteyn, and Ryzhik. Table of Integrals, Series and Products. 5th ed. Academic Press.
|
|
Luke, Y. The Special Functions and Their Approximations. Vol. 1 Chap. 6.
|
|
|