Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
LinearAlgebra[Generic][CharacteristicPolynomial] - compute the characteristic polynomial of a square Matrix
Calling Sequence
CharacteristicPolynomial[R](A)
CharacteristicPolynomial[R](A,x)
CharacteristicPolynomial[R](A,output=factored)
CharacteristicPolynomial[R](A,output=expanded)
CharacteristicPolynomial[R](A,method=Berkowitz)
CharacteristicPolynomial[R](A,method=Hessenberg)
Parameters
R
-
the domain of computation
x
name of the variable
A
square Matrix of values in R
Description
The (indexed) parameter R, which specifies the domain of computation, a commutative ring, must be a Maple table/module which has the following values/exports:
R[`0`] : a constant for the zero of the ring R
R[`1`] : a constant for the (multiplicative) identity of R
R[`+`] : a procedure for adding elements of R (nary)
R[`-`] : a procedure for negating and subtracting elements of R (unary and binary)
R[`*`] : a procedure for multiplying elements of R (binary and commutative)
R[`=`] : a boolean procedure for testing if two elements of R are equal
A must be a square (n x n) Matrix of values from R.
The optional parameter x must be a name.
CharacteristicPolynomial[R](A) returns a Vector V of dimension n+1 of values in R containing the coefficients of the characteristic polynomial of A. The characteristic polynomial is the polynomial V[1]*x^n + V[2]*x^(n-1) + ... + V[n]*x + V[n+1].
CharacteristicPolynomial[R](A,x) returns the characteristic polynomial as a Maple expression in the variable x. This option should only be used if the data type for R is compatible with Maple's * operator. For example, if the elements of R are represented by Vectors, or Arrays, then this option should not be used because Vector([1,2,3])*x is simplified to Vector([x,2*x,3*x]).
The optional argument output=... specifies the form of the output. In the case output=expanded, the characteristic polynomial is returned as one Vector encoding the characteristic polynomial in expanded form. In the case output=factored, the characteristic polynomial is returned as a sequence of the form m, [v1, v2, ...] where m is a non-negative integer, and v1, v2, ... are Vectors of elements of R representing (not necessarily irreducible) factors of the characteristic polynomial. The integer m represents the factor x^m. The implementation looks for diagonal blocks and computes the characteristic polynomial of each block separately.
The optional argument method=... specifies the algorithm to be used. The option method=Berkowitz directs the code to use the Berkowitz algorithm, which uses O(n^4) arithmetic operations in R. The option method=Hessenberg directs the code to use the Hessenberg algorithm, which uses O(n^3) arithmetic operations in R but requires R to be a field, i.e., the following operation must be defined:
R[`/`]: a procedure for dividing two elements of R
If method=... is not given, and the operation R[`/`] is defined, then the Hessenberg algorithm is used, otherwise the Berkowitz algorithm is used.
Examples
See Also
LinearAlgebra[CharacteristicPolynomial], LinearAlgebra[Generic], LinearAlgebra[Generic][BerkowitzAlgorithm], LinearAlgebra[Generic][HessenbergAlgorithm], LinearAlgebra[Modular][CharacteristicPolynomial]
Download Help Document