Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
LinearAlgebra[Generic][SmithForm] - compute the Smith form of a Matrix
Calling Sequence
SmithForm[E](A)
SmithForm[E](A,output=out)
Parameters
E
-
the domain of computation, an Euclidean domain
A
m x n Matrix of values in E
out
one of S, U, or V, or a list containing one or more of these names
Description
SmithForm[E](A) returns the Smith Normal Form S of A which satisfies:
(1) S[i,j] = 0 if i<>j
(2) S[i,i] is unit normal in E (implies uniqueness)
(3) S[i,i] | S[i+1,i+1] for all 1<=i<min(m,n)
(4) prod(S[i,i],i=1..d) = u*gcd(all minors of A of dimension d) where u is a unit
(5) S[i,i] = 0 for r < i <= min(m,n) where r is the rank of A
The (indexed) parameter E, which specifies the domain of computation, a Euclidean domain, must be a Maple table/module which has the following values/exports:
E[`0`]: a constant for the zero of the ring E
E[`1`]: a constant for the (multiplicative) identity of E
E[`+`]: a procedure for adding elements of E (nary)
E[`-`]: a procedure for negating and subtracting elements of E (unary and binary)
E[`*`]: a procedure for multiplying two elements of E (commutative)
E[`=`]: a boolean procedure for testing if two elements in F are equal
E[Quo]: a procedure which computes the quotient of a / b. E[Quo](a,b,'r') computes the quotient q of a / b and optionally assigns r the remainder satisfying a = b q + r.
E[Rem]: a procedure for finding the remainder of a / b. E[Rem(a,b,'q') computes the remainder r of a / b and optionally assigns q the quotient satisfying a = b q + r.
E[Gcdex]: a procedure for finding the gcd g of a and b, an element of E. E[Gcdex](a,b,'s','t') computes the gcd of a and b and optionally assigns s and t elements of E satisfying s a + t b = g.
E[UnitPart]: a procedure for returning the unit part of an element in E
E[EuclideanNorm]: a procedure for computing the Euclidean norm of an element in E, a non-negative integer. For non-zero a,b in E, units u,v in E, the Euclidean norm satisfies
EuclideanNorm(a b) >= EuclideanNorm(a)
EuclideanNorm(u) = EuclideanNorm(v)
EuclideanNorm(u a) = EuclideanNorm(a)
The Smith form is computed by first computing H the Hermite form of A, then computing the Hermite form of the transpose of H. If the resulting matrix is not diagonal, often it is, then the above sequence of computations is repeated, usually once, until it is.
Examples
See Also
Euclidean Norm, LinearAlgebra[Generic], LinearAlgebra[Generic][HermiteForm], LinearAlgebra[SmithForm]
Download Help Document