Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
OreTools[MathOperations][HilbertTwistReduction] - return isomorphic images of Ore polynomials under the Hilbert twist reduction
OreTools[MathOperations][InverseOfHilbertTwistReduction] - return pre-images of Ore polynomials under the HilbertTwistReduction
OreTools[MathOperations][AccurateIntegration] - check for the existence of a primitive element, and perform accurate integration
Calling Sequence
HilbertTwistReduction(P, A, 'B')
InverseOfHilbertTwistReduction(P, A)
AccurateIntegration(L, A)
Note: An Ore polynomial ring B is of Hilbert's twist type if its (pseudo) derivation maps everything to zero. For an Ore polynomial ring A with nontrivial automorphism, there is a ring isomorphism from A onto the ring B of Hilbert's twist type whose automorphism is the same as the A's. The isomorphism is called the Hilbert twist reduction.
Parameters
P
-
Ore polynomial or a list of Ore polynomials; to define an Ore polynomial, use the OrePoly structure.
L
Ore polynomial.
A
Ore ring with nontrivial automorphism; to define an Ore algebra, use the SetOreRing function.
B
(optional) unevaluated name.
Description
The HilbertTwistReduction(P, A, B) calling sequence returns the image of P under the Hilbert twist reduction. If the (optional) third argument B is present, it is assigned to the Ore ring whose automorphism is the same as the A's and whose (pseudo) derivation sends everything to zero.
The InverseOfHilbertTwistReduction(P, A) calling sequence returns the pre-image of P under the Hilbert twist reduction. Note that A is the source ring of the Hilbert twist reduction.
Let A be the shift, q-shift, or differential algebra. The AccurateIntegration(L, A) calling sequence performs accurate integration, which solves the following problem: Let y satisfy L(y)=0 and g satisfy lambda(g)=y, where lambda means the usual derivative in the differential case, the difference operator in the shift case, and the q-difference operator in the q-shift case. The function builds an annihilator S (represented as an OrePoly structure) for g of the same degree as that of L, and an operator K such that g=K(y) if both exist. Otherwise, it returns .
Examples
Define an Ore ring.
A := SetOreRing(n, 'difference', 'sigma' = proc(p, x) eval(p, x=x+1) end, 'sigma_inverse' = proc(p, x) eval(p, x=x-1) end, 'delta' = proc(p, x) eval(p, x=x+1) - p end, 'theta1' = 0);
Examples of AccurateIntegration:
See Also
OreTools, OreTools/OreAlgebra, OreTools/OrePoly, OreTools[MathOperations], OreTools[Properties], OreTools[SetOreRing]
References
Abramov, S.A., and van Hoeij, M. "Integration of Solutions of Linear Functional Equations." Integral Transformations and Special Functions. Vol. 8 No. 1-2. (1999): 3-12.
Download Help Document