Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
Solving Homogeneous ODEs of Class D
Description
The general form of the homogeneous equation of class D is given by the following:
homogeneousD_ode := diff(y(x),x)= y(x)/x+g(x)*f(y(x)/x);
where f(y(x)/x) and g(x) are arbitrary functions of their arguments. See Differentialgleichungen, by E. Kamke, p. 20. This type of ODE can be solved in a general manner by dsolve and the coefficients of the infinitesimal symmetry generator are also found by symgen.
Examples
A pair of infinitesimals for homogeneousD_ode
The general solution for this ODE
Answers can be tested using odetest
Let's see how the answer above works when turning f into an explicit function; f is the identity mapping.
See Also
DEtools, odeadvisor, dsolve, and ?odeadvisor,<TYPE> where <TYPE> is one of: quadrature, linear, separable, Bernoulli, exact, homogeneous, homogeneousB, homogeneousC, homogeneousD, homogeneousG, Chini, Riccati, Abel, Abel2A, Abel2C, rational, Clairaut, dAlembert, sym_implicit, patterns; for other differential orders see odeadvisor,types.
Download Help Document