Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
PDEtools[dsubs] - perform differential substitutions into expressions
Calling Sequence
dsubs(deriv=a, expr)
dsubs(deriv1=a, '...', expr)
Parameters
a, expr
-
differential expressions
deriv
derivative for which to substitute
deriv1, '...'
equation or sequence of substitution equations
Description
dsubs substitutes the given sequence of equations into expr from left to right, the same way subs does. However, unlike subs, dsubs will substitute the left hand side of each substitution equation until this derivative is eliminated from the target (when this is possible). When many substitution equations are given, they are applied sequentially, as in subs. dsubs also works with anticommutative variables set using the Physics package.
The exception to this rule occurs when a substitution cannot be applied successively, like the algebraic substitution . In this case the result returned is the one obtained by performing a single substitution.
All substitution equations must be in solved form.
This function is part of the PDEtools package, and so it can be used in the form dsubs(..) only after executing the command with(PDEtools). However, it can always be accessed through the long form of the command by using PDEtools[dsubs](..).
Examples
The first example compares the results of subs and dsubs.
In this case subs returns an expression which contains f', the object being substituted.
Here, dsubs completely removes the f', the left hand side of the substitution equation.
Here is a PDE example.
The dsubs command also works with anticommutative variables, natively, without using the approach explained in PerformOnAnticommutativeSystem.
Set first and as suffixes for variables of type/anticommutative (see Setup)
A PDE system example with two unknown anticommutative functions of four variables, two commutative and two anticommutative; to avoid redundant typing in the input that follows and redundant display of information on the screen let's use PDEtools:-diff_table PDEtools:-declare
Now we can enter derivatives directly as the function's name indexed by the differentiation variables and see the display the same way; two PDEs
By inspection, it is clear that the derivatives in pde[2] can be substituted in pde[1] reducing the problem to a simpler one:
Substituting this result for back into pde[2], then multiplying by and subtracting from the above also leads to the PDE system solution, that in this case can also be obtained using a different technique passing the whole system directly to pdsolve
See Also
DEtools, PDEtools, subs
Download Help Document