Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
Frobenius - inert Frobenius function
Calling Sequence
Frobenius(A)
Frobenius(A, 'P')
Parameters
A
-
square Matrix
'P'
(optional) assigned the transformation matrix
Description
The Frobenius function is a placeholder for representing the Frobenius form (or Rational Canonical form) of a square matrix. It is used in conjunction with either mod or evala.
The Frobenius function returns the square matrix which has the following structure: F = diag(C[1], C[2],.., C[k]) where the are companion matrices associated with polynomials with the property that divides , for = 2..k.
If called in the form Frobenius(A, 'P'), then P will be assigned the transformation matrix corresponding to the Frobenius form, that is, the matrix P such that inverse(P) * A * P = F.
The call Frobenius(A) mod p computes the Frobenius form of A modulo p which is a prime integer. The entries of A must have rational coefficients or coefficients from an algebraic extension of the integers modulo p.
The call evala(Frobenius(A)) computes the Frobenius form of the square matrix A where the entries of A are algebraic numbers (or functions) defined by RootOfs.
Examples
Test the result
See Also
LinearAlgebra[FrobeniusForm], LinearAlgebra[Modular], RootOf
References
Martin, K., and Olazabal, J.M. "An Algorithm to Compute the Change Basis for the Rational Form of K-endomorphisms." Extracta Mathematicae, (August 1991): 142-144.
Ozello, Patrick. "Calcul Exact des Formes de Jordan et de Frobenius d'une Matrice." PhD Thesis, Joseph Fourier University, Grenoble, France, 1987.
Download Help Document