Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
Indexed RootOf
Calling Sequence
RootOf(expr, x, index=i)
Parameters
expr
-
algebraic expression or equation
x
variable name
i
integer
Description
An index can be specified to select a particular root of an equation. If the index i is an integer, then the RootOf represents the ith root of the equation in an order described below.
Indices are understood by Maple in the following cases:
The equation expr is a polynomial in x whose coefficients can be numerically evaluated (see complexcons). The RootOf represents the ith complex root (multiplicities taken into account) of the polynomial. The roots are ordered counter-clockwise, with ties broken by increasing modulus. The first root is chosen as follows:
roots with the smallest argument in absolute value are selected,
roots with positive argument, if any, are then chosen,
the root with the smallest modulus amongst the remaining roots is the root number 1.
If the RootOf represents an th root, that is, if expr is a binomial of degree , then the index i corresponds to where is the principal branch of the nth root function.
The default ordering may be changed by over-writing the function called `RootOf/sort`. The argument of this function is a list of complexcons and the result must be the list of sorted elements. If the default ordering is modified, some functions may not work as expected (convert/radical for instance). The evala function will still behave as expected.
The equation is a polynomial in x with polynomial coefficients in a set of variables X. In this case, the RootOf defines an algebraic function. The definition of the function which is identified by the index is inherited from the ordering of the roots in the constant case above: For each complex number c, the value of RootOf(expr(X), index=i) at c is given by RootOf(expr(c), index=i).
Examples
See Also
alias, allvalues, convert/radical, evala, RootOf, type/algfun, value
Download Help Document