Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
algcurves[is_hyperelliptic] - Test if an algebraic curve is hyperelliptic
Calling Sequence
is_hyperelliptic(f, x, y)
Parameters
f
-
irreducible polynomial in x and y
x
variable
y
Description
An irreducible algebraic curve is called rational if the genus is 0. In this case a parametrization can be computed. It is called elliptic if the genus is 1. It is called hyperelliptic if the genus is more than 1 and is birational to a curve with degree(F,Y)=2. In the elliptic or hyperelliptic case a normal form can be computed with Weierstrassform.
If the genus is less than 2, then the curve is not hyperelliptic and the output will be false. If the genus is 2, then the output will be true. For higher genus, the output can be true or false.
Examples
See Also
algcurves[genus], algcurves[parametrization], algcurves[Weierstrassform]
Download Help Document