Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
algcurves[plot_knot] - make a tubeplot for a singularity knot
Calling Sequence
plot_knot(f, x, y, opt)
Parameters
f
-
algebraic curve with a singularity at the point 0
x, y
variables
opt
(optional) a sequence of options
Description
Let f be a polynomial in x and y giving an algebraic curve in the plane C^2 with a singularity at the point . The output of this procedure is called the singularity knot of this singularity. This knot is defined as follows: By identifying C^2 with R^4 the curve can be viewed as a two-dimensional surface over the real numbers. This procedure computes the intersection of this surface with a sphere in R^4 with radius epsilon and center 0. The intersection consists of a number of closed curves over the real numbers. After applying a projection from the sphere (which is three-dimensional over R) to R^3 these curves can be plotted by the tubeplot command in the plots package. Such a plot gives information about the singularity of f at the point 0. See also: E. Brieskorn, H. Knörrer: Ebene Algebraische Kurven, Birkhauser 1981.
The curve given by f need not be irreducible, but f must be square-free otherwise this procedure does not work.
If printlevel > 1 the number of branches will be printed to the screen. Each branch (i.e. place above the point 0) corresponds to one component in the knot.
Options
epsilon=value -- the radius of the sphere. The default is 1. In some cases a smaller number must be chosen for the picture to be correct.
color=list -- specifying a list of colors results in a plot where each branch gets its own color.
The options for tubeplot can be used as well. In plot_knot these options have the following default values: numpoints=150, radius=0.05, tubepoints=5, scaling=constrained, and style=surface.
Examples
This is the same knot as above, but it looks different because the projection point is different now that x and y are switched. This is the command to create the plot from the Plotting Guide.
See Also
plots[tubeplot]
Download Help Document