Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
numapprox[chebyshev] - Chebyshev series expansion
Calling Sequence
chebyshev(f, x=a..b, eps)
chebyshev(f, x, eps)
chebyshev(f, a..b, eps)
Parameters
f
-
procedure or expression representing the function
x
variable name appearing in f, if f is an expression
a, b
numerical values specifying the interval of approximation
eps
(optional) numeric value
Description
This function computes the Chebyshev series expansion of f, with respect to the variable x on the interval , valid to accuracy eps.
If the second argument is simply a name x then the equation is implied.
If the second argument is a range then the first argument is assumed to be a Maple operator and the result will be returned as an operator. Otherwise, the first argument is assumed to be an expression and the result will be returned as an expression.
If the third argument eps is present then it specifies the desired accuracy; otherwise, the value used is . It is an error to specify eps less than 10^(-Digits).
The expression or operator f must evaluate to a numerical value when x takes on a numerical value. Moreover, it must represent a function which is analytic in a region surrounding the interval .
The resulting series is expressed in terms of the Chebyshev polynomials with floating-point series coefficients. If 'ser' is the Chebyshev series then conversion to ordinary polynomial form can be accomplished via eval(ser, T=orthopoly[T]).
The series computed is the ``infinite'' Chebyshev series, truncated by dropping all terms with coefficients smaller than eps multiplied by the largest coefficient.
Note: The name T used in representing the Chebyshev polynomials is a global name, so the user must ensure that this name has no previous value.
The command with(numapprox,chebyshev) allows the use of the abbreviated form of this command.
Examples
See Also
numapprox, orthopoly, series, taylor
Download Help Document