Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
Overview of the DifferentialGeometry Package
Description
The DifferentialGeometry package is a comprehensive suite of commands and subpackages featuring a collection of tightly integrated tools for computations in the areas of: calculus on manifolds (vector fields, differential forms and transformations); tensor analysis; calculus on jet spaces; Lie algebras and Lie and transformation groups.
The software includes a variety of homotopy operators for the deRham and variational bicomplexes; extensive capabilities for computing with the Newman-Penrose and spinor formalisms in general relativity; programs for analyzing the structure of general and semi-simple Lie algebras; programs for finding symmetries of tensor fields and other geometric structures; and programs for construction of a solvable Lie group from its Lie algebra.
Computations may be performed in user specified frames. One can also compute with abstract differential forms, that is, with differential forms and their structure equations defined without reference to any underlying system of coordinates.
Also included are extensive tables of Lie algebras, Lie algebras of vectors, differential equations, and space-time metrics taken from the mathematics and mathematical physics literature.
The DifferentialGeometry package includes a comprehensive collection of Lessons and Tutorials. The lessons worksheets provide a systematic approach to learning the commands in the DifferentialGeometry, Tensor, LieAlgebras and JetCalculus sub-packages. Each lesson contains a set of exercises which range in difficult from simple computational exercises to programming exercises. Solutions are given. The tutorials present specialized applications of the DifferentialGeometry package.
The DiffferentialGeometry package is based upon the Vessiot package developed by I. M. Anderson, Florin Catrina, Sydney Chamberlain, Cinnamon Hillyard, Jeff Humphries, Jamie Jorgensen, Charles Miller, and Charles Torre at Utah State University. The redesign and expansion of Vessiot to DifferentialGeometry for Maple 11 was done by I. M. Anderson and E. S. Cheb-Terrab.
Each command in the DifferentialGeometry package can be accessed by using either the long form or the short form of the command name in the command calling sequence.
List of the DifferentialGeometry commands and sub-packages
The following is a list of available commands and sub-packages.
&minus
&mult
&plus
&tensor
&wedge
Annihilator
ApplyTransformation
ChangeFrame
ComplementaryBasis
ComposeTransformations
Convert
DeRhamHomotopy
DGbasis
DGsetup
DGzip
DualBasis
ExteriorDerivative
Flow
FrameData
GroupActions
Hook
InfinitesimalTransformation
IntegrateForm
IntersectSubspaces
InverseTransformation
JetCalculus
Library
LieAlgebras
LieBracket
LieDerivative
GetComponents
Preferences
Pullback
PullbackVector
Pushforward
RemoveFrame
Tensor
Tools
Transformation
evalDG
A brief description of the package's commands is as follows.
To display the help page for a particular DifferentialGeometry command, see Getting Help with a Command in a Package.
&minus: find the difference between two vectors, differential forms or tensors.
&mult: multiply a vector, differential form or tensor by a Maple expression.
&plus: add two vectors, differential forms or tensors.
&tensor: calculate the tensor product of two tensors.
&wedge: calculate the exterior product of two differential forms.
Annihilator: find the subspace of vectors (or 1-forms) whose interior product with a given list of 1-forms (or vectors) vanish.
ApplyTransformation: evaluate a transformation at a point.
ChangeFrame: change the current or active frame.
ComplementaryBasis: extend a basis for subspace to a basis for larger subspace.
ComposeTransformations: compose a sequence of two or more transformations.
Convert: change the presentations or internal representations of various geometric objects.
DeRhamHomotopy: the homotopy operator for the exterior derivative operator (the de Rham complex).
DGbasis: select a maximal linearly independent list of elements from a list of vectors, forms or tensors.
DGsetup: initialize a coordinate system, frame, or Lie algebra.
DGzip: form a linear combination, wedge product or tensor product of a list of vectors, forms or tensors.
DualBasis: calculate the dual basis to a given basis of vectors or 1-forms.
evalDG: evaluate a DifferentialGeometry expression.
ExteriorDerivative: take the exterior derivative of a differential form.
Flow: calculate the 1-parameter group of diffeomorphisms (the flow) of a vector field.
FrameData: calculate the structure equations for a generic (anholonomic) frame.
GroupActions: a package for Lie groups and group actions on manifolds.
Hook: the interior product of a vector or a list of vectors with a differential form.
InfinitesimalTransformation: compute the Lie algebra of infinitesimal generators for an action of a Lie group on a manifold.
IntegrateForm: evaluate a p-fold iterated integral of a differential p-form.
IntersectSubspaces: find the intersection of a list of vector subspaces of vectors, forms or tensors.
InverseTransformation: find the inverse of a transformation.
JetCalculus: a package for the variational calculus on jet spaces.
Library: a package of databases of Lie algebras, vector field systems, differential equations, and exact solutions in general relativity.
LieAlgebras: a package for the symbolic analysis of Lie algebras.
LieBracket: calculate the Lie bracket of two vector fields.
LieDerivative: calculate the Lie derivative of a vector field, differential form or tensor with respect to a vector field.
GetComponents: find the coefficients of a vector, differential form or tensor with respect to a list of vectors, differential forms or tensors.
Preferences: set worksheet preferences for the DifferentialGeometry package.
Pullback: pullback a differential p-form by the Jacobian of a transformation.
PullbackVector: find (if possible) a vector field whose pushforward by the Jacobian of a given transformation is a given vector field.
Pushforward: pushforward a vector or a vector field by the Jacobian of a transformation.
RemoveFrame: remove a frame from a Maple session.
Tensor: a package for tensor analysis within the DifferentialGeometry environment.
Tools: a small utility package for DifferentialGeometry.
Transformation: create a transformation or mapping from one manifold to another.
See Also
DifferentialGeometry, JetCalculus, Library, LieAlgebras, Tensor, Tools
Download Help Document