Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
LambertW - The Lambert W function
Calling Sequence
LambertW(x)
LambertW(k, x)
Parameters
x
-
algebraic expression
k
algebraic expression, understood to be an integer
Description
The LambertW function satisfies
As the equation has an infinite number of solutions y for each (non-zero) value of x, LambertW has an infinite number of branches. Exactly one of these branches is analytic at 0. In Maple this branch is referred to as the principal branch of LambertW, and is denoted by LambertW(x). The other branches all have a branch point at 0, and these branches are denoted in Maple by LambertW(k, x), where k is any non-zero integer. (The principal branch can also be referred to as LambertW(0, x).)
The principal branch and the pair of branches LambertW(-1, x) and LambertW(1, x) share an order 2 branch point at -exp(-1). The branch cut dividing these branches is the subset of the real line from to , and the values of the branches of LambertW on this branch cut are assigned using the rule of counter-clockwise continuity around the branch point. This means that LambertW(x) is real-valued for x in the range , while the image of under LambertW(x) is the curve , for y in .
Similarly, the branch corresponding to -1, LambertW(-1, x), is real-valued on the interval , while the image of under this branch is the curve , for y in -Pi .. 0.
For all the branches other than the principal branch, the branch cut dividing them is the negative real axis. The branches are numbered up and down from the real axis (this is very similar to the way the branches of the logarithm are indexed by the multiple of which must be subtracted from the imaginary part to recover the principal branch). Again, the values of the branches of LambertW along the branch cut are determined by the rule of counter-clockwise continuity around the branch point at 0. Thus, the image of the negative real axis under the branch LambertW(k, x) is the curve , for y in if and y in if . These curves, therefore, bound the ranges of the branches of LambertW, and in each case, the upper boundary of the region is included in the range of the corresponding branch.
The asymptotic behavior of LambertW at complex infinity and at 0 (for the non-principal branches) is given by
where denotes the principal branch of the logarithm, and the are constants independent of k. The expansion for LambertW(-1, x) is not valid for x tending to 0 along the negative real axis (the effect of the branch point at -exp(-1) must be considered), but holds otherwise.
The LambertW function is closely related to the tree generating function popularized in the analysis of algorithms discipline. When counts the number of distinct oriented trees with n labeled vertices and , then .
Examples
The alias command can be used to shorten the name, if desired
See Also
alias, initialfunctions, Wrightomega
References
Corless, R.M.; Gonnet, G.H.; Hare, D.E.G.; Jeffrey, D.J.; and Knuth, D.E. "On the Lambert W Function." Advances in Computational Mathematics, Vol. 5, (1996): 329-359.
Download Help Document