FunctionAdvisor/integral_form - return the integral form of a given mathematical function
|
Calling Sequence
|
|
FunctionAdvisor(integral_form, math_function)
|
|
Parameters
|
|
integral_form
|
-
|
literal name; 'integral_form'
|
math_function
|
-
|
Maple name of mathematical function
|
|
|
|
|
Description
|
|
•
|
The FunctionAdvisor(integral_form, math_function) command returns the integral form for the function, if it exists.
|
|
|
Examples
|
|
>
|
|
| (1) |
>
|
|
| (2) |
>
|
|
| (3) |
>
|
|
* Partial match of "integral" against topic "integral_form".
| |
![[EllipticE(k) = Int((1-k^2*_alpha1^2)^(1/2)/(1-_alpha1^2)^(1/2), _alpha1 = 0 .. 1), MathematicalFunctions:-`with no restrictions on `(k)], [EllipticE(z, k) = Int((1-k^2*_alpha1^2)^(1/2)/(1-_alpha1^2)^(1/2), _alpha1 = 0 .. z), MathematicalFunctions:-`with no restrictions on `(k, z)]](/support/helpjp/helpview.aspx?si=7471/file01731/math82.png)
| (4) |
>
|
|
* Partial match of "integral" against topic "integral_form".
| |
![](/support/helpjp/helpview.aspx?si=7471/file01731/math92.png)
| (5) |
The variables used by the FunctionAdvisor command to create the function calling sequences are local variables. Therefore, the previous example does not depend on a or z.
>
|
|
| (6) |
To make the FunctionAdvisor command return resulting using global variables, pass the function call itself.
>
|
|
* Partial match of "calling" against topic "calling_sequence".
| |
| (7) |
>
|
|
* Partial match of "integral" against topic "integral_form".
| |
![ex2 := [EllipticF(a, z) = Int(1/((1-_alpha1^2)^(1/2)*(1-z^2*_alpha1^2)^(1/2)), _alpha1 = 0 .. a), MathematicalFunctions:-`with no restrictions on `(a, z)]](/support/helpjp/helpview.aspx?si=7471/file01731/math134.png)
| (8) |
>
|
|
| (9) |
|
|
Download Help Document
Was this information helpful?