Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
Primfield - primitive element of an algebraic extension
Calling Sequence
Primfield(L, K)
Parameters
L
-
set of RootOfs
K
(optional) set of RootOfs
Description
The Primfield function is a placeholder for representing a primitive description of an algebraic extension. It is used in conjunction with either evala or mod.
The call evala(Primfield(L, K)) computes a primitive element of the field L over the field K, that is an element a such that . In case K is not specified, the smallest possible transcendental extension of the rational numbers is chosen.
A list of the form , where the 's denote equations, is returned: the left-hand side of q0 is a RootOf representing the primitive element and the right-hand side of this equation is the expression of the primitive element in terms of the RootOfs in L. The left-hand side of the other equations are the RootOfs in L and the right-hand side are their expressions in terms of the powers of the primitive element.
The RootOfs in K must form a subset of the RootOfs occurring in L. In other words, K must be a 'syntactic' subfield of the field L.
In case Primfield is used in conjunction with mod then the field K equals Fp, the finite field with p elements and K cannot be specified. If L contains transcendental elements (if L contains variables) then random values in Fp will be substituted for these variables and will not be calculated.
Most Maple procedures used in conjunction with mod do not allow multiple or nested or reducible RootOfs as input. To handle such RootOfs, use Primfield to find a reduction to a single irreducible RootOf modulo p. If the input contains dependent or reducible RootOfs then Primfield in conjunction with evala will generate an error message, but Primfield in conjunction with mod will chose a random factor. This is useful for reducing expressions in characteristic zero to a finite field, a process in which irreducible and independent RootOfs often become reducible or dependent. For this application is often not needed; to avoid its computation include a variable in the set L.
Examples
See Also
evala, mod, RootOf
Download Help Document