Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
diffalg[differential_sprem] - return sparse pseudo remainder of a differential polynomial
Calling Sequence
differential_sprem (q, L, R, 'h')
differential_sprem (q, C, 'h')
Parameters
q
-
differential polynomial in R
L
list or a set of differential polynomials in R
C
characterizable differential ideal
R
differential polynomial ring
h
(optional) name
Description
Important: The diffalg package has been deprecated. Use the superseding package DifferentialAlgebra instead.
The function differential_sprem is an implementation of Ritt's reduction algorithm. It is an extension of the pseudo-remainder algorithm to differential polynomials.
L is assumed to form a differentially triangular set.
Let denote L or equations(C).
The function differential_sprem returns a differential polynomial r such that
(a)
(b) No proper derivative of the leaders of the elements of appears in .
(c) The degree according to a leader of any element of is strictly less in than in .
(d) The differential polynomial h is a power product of factors of the initials and the separants of the elements of A.
The differential_sprem(q, L, R, 'h') calling sequence returns an error message if contains 0. If contains a non zero element of the ground field of R, it returns zero.
The differential_sprem(q, C, 'h') calling sequence requires that q belong to the differential ring in which C is defined.
The function rewrite_rules shows how the equations of C are interpreted by the pseudo-reduction algorithm.
Then r is zero if and only if q belongs to C.
The command with(diffalg,differential_sprem) allows the use of the abbreviated form of this command.
Examples
Differential pseudo-division by a single differential polynomial:
Reduction according to a characterizable differential ideal:
See Also
diffalg(deprecated), diffalg(deprecated)/belongs_to, diffalg(deprecated)/differential_algebra, diffalg(deprecated)/differential_ring, diffalg(deprecated)/Rosenfeld_Groebner, DifferentialAlgebra[DifferentialPrem]
Download Help Document